
Navigation World Models

Supplementary Material

The structure of the Appendix is as follows: we start
by describing how we plan navigation trajectories via Stan-
dalone Planning in Section 7, and then include more exper-
iments and results in Section 8.

7. Standalone Planning Optimization
As described in Section 3.3, we use a pretrained NWM to
standalone-plan goal-conditioned navigation trajectories by
optimizing Eq.5. Here, we provide additional details about
the optimization using the Cross-Entropy Method [48] and
the hyperparameters used. Full standalone navigation plan-
ning results are presented in Section 8.2.

We optimize trajectories using the Cross-Entropy
Method, a gradient-free stochastic optimization technique
for continuous optimization problems. This method itera-
tively updates a probability distribution to improve the like-
lihood of generating better solutions. In the unconstrained
standalone planning scenario, we assume the trajectory is a
straight line and optimize only its endpoint, represented by
three variables: a single translation u and yaw rotation ω.
We then map this tuple into eight evenly spaced delta steps,
applying the yaw rotation at the final step. The time interval
between steps is fixed at k = 0.25 seconds. The main steps
of our optimization process are as follows:
• Initialization: Define a Gaussian distribution with

mean µ = (µ!x, µ!y, µω) and variance ! =
diag(ε2

!x
,ε

2
!y

,ε
2
ω
) over the solution space.

• Sampling: Generate N = 120 candidate solutions by
sampling from the current Gaussian distribution.

• Evaluation: Evaluate each candidate solution by simulat-
ing it using the NWM and measuring the LPIPS score be-
tween the simulation output and input goal images. Since
NWM is stochastic, we evaluate each candidate solution
M times and average to obtain a final score.

• Selection: Select a subset of the best-performing solu-
tions based on the LPIPS scores.

• Update: Adjust the parameters of the distribution to in-
crease the probability of generating solutions similar to
the top-performing ones. This step minimizes the cross-
entropy between the old and updated distributions.

• Iteration: Repeat the sampling, evaluation, selection, and
update steps until a stopping criterion (e.g. convergence
or iteration limit) is met.

For simplicity, we run the optimization process for a sin-
gle iteration, which we found effective for short-horizon
planning of two seconds, though further improvements are
possible with more iterations. When navigation constraints
are applied, parts of the trajectory are zeroed out to respect

these constraints. For instance, in the ”forward-first” sce-
nario, the translation action is u = (”x, 0) for the first five
steps and u = (0,”y) for the last three steps.

8. Experiments and Results
8.1. Experimental Study
We elaborate on the metrics and datasets used.
Evaluation Metrics. We describe the evaluation metrics
used to assess predicted navigation trajectories and the qual-
ity of images generated by our NWM.

For visual navigation performance, Absolute Trajec-
tory Error (ATE) measures the overall accuracy of trajec-
tory estimation by computing the Euclidean distance be-
tween corresponding points in the estimated and ground-
truth trajectories. Relative Pose Error (RPE) evaluates the
consistency of consecutive poses by calculating the error in
relative transformations between them [57].

To more rigorously assess the semantics in the world
model outputs, we use Learned Perceptual Image Patch
Similarity (LPIPS) and DreamSim [14], which evaluate per-
ceptual similarity by comparing deep features from a neural
network [75]. LPIPS, in particular, uses AlexNet [33] to
focus on human perception of structural differences. Ad-
ditionally, we use Peak Signal-to-Noise Ratio (PSNR) to
quantify the pixel-level quality of generated images by mea-
suring the ratio of maximum pixel value to error, with
higher values indicating better quality.

To study image and video synthesis quality, we use
Fréchet Inception Distance (FID) and Fréchet Video Dis-
tance (FVD), which compare the feature distributions of
real and generated images or videos. Lower FID and FVD
scores indicate higher visual quality [23, 64].
Datasets. For all robotics datasets, we have access to the
location and rotation of the robots, and we use this to infer
the actions as the delta in location and rotation. We remove
all backward movement which can be jittery following No-
MaD [55], thereby splitting the data to forward walking seg-
ments for SCAND [30], TartanDrive [60], RECON [52],
and HuRoN [27]. We also utilize unlabeled Ego4D videos,
where we only use time shift as action. Next, we describe
each individual dataset.
• SCAND [30] is a robotics dataset consisting of socially

compliant navigation demonstrations using a wheeled
Clearpath Jackal and a legged Boston Dynamics Spot.
SCAND has demonstrations in both indoor and outdoor
settings at UT Austin. The dataset consists of 8.7 hours,
138 trajectories, 25 miles of data and we use the corre-
sponding camera poses. We use 484 video segments for



unknown environment known environments
data Go Stanford RECON HuRoN SCAND TartanDrive
in-domain data 0.658± 0.002 0.295 ± 0.002 0.250 ± 0.003 0.403± 0.002 0.414 ± 0.001
+ Ego4D (unlabeled) 0.652 ± 0.003 0.368± 0.003 0.377± 0.002 0.398 ± 0.001 0.430± 0.000

Table 5. Training on additional unlabeled data improves performance on unseen environments. Reporting results on unknown
environment (Go Stanford) and known one (RECON). Results reported by evaluating LPIPS 4 seconds into the future.

training and 121 video segments for testing. Used for
training and evaluation.

• TartanDrive [60] is an outdoor off-roading driving dataset
collected using a modified Yamaha Viking ATV in Pitts-
burgh. The dataset consists of 5 hours and 630 trajecto-
ries. We use 1, 000 video segments for training and 251
video segments for testing.

• RECON [52] is an outdoor robotics dataset collected us-
ing a Clearpath Jackal UGV platform. The dataset con-
sists of 40 hours across 9 open-world environments. We
use 9, 468 video segments for training and 2, 367 video
segments for testing. Used for training and evaluation.

• HuRoN [27] is a robotics dataset consisting of social in-
teractions using a Robot Roomba in indoor settings col-
lected at UC Berkeley. The dataset consists of over 75
hours in 5 different environments with 4, 000 human in-
teractions. We use 2, 451 video segments for training and
613 video segments for testing. Used for training and
evaluation.

• GO Stanford [24, 25], a robotics datasets capturing the
fisheye video footage of two different teleoperated robots,
collected at at least 27 different Stanford building with
around 25 hours of video footage. Due to the low resolu-
tion images, we only use it for out of domain evaluation.

• Ego4D [18] is a large-scale egocentric dataset consist-
ing of 3, 670 hours across 74 locations. Ego4D con-
sists a variety of scenarios such as Arts & Crafts, Cook-
ing, Construction, Cleaning & Laundry, and Grocery
Shopping. We use only use videos which involve vi-
sual navigation such as Grocery Shopping and Jogging.
We use a total 1619 videos of over 908 hours for train-
ing only. Only used for unlabeled training unlabeled
training. The videos we use are from the following
Ego4D scenarios: “Skateboard/scooter”, “Roller skat-
ing”, “Football”, “Attending a festival or fair”, “Gar-
dener”, “Mini golf”, “Riding motorcycle”, “Golfing”,
“Cycling/jogging”, “Walking on street”, “Walking the
dog/pet”, “Indoor Navigation (walking)”, “Working in
outdoor store”, “Clothes/other shopping”, “Playing with
pets”, “Grocery shopping indoors”, “Working out out-
side”, “Farmer”, “Bike”, “Flower Picking”, “Attending
sporting events (watching and participating)”, “Drone fly-
ing”, “Attending a lecture/class”, “Hiking”, “Basketball”,
“Gardening”, “Snow sledding”, “Going to the park”.

Visual Navigation Evaluation Set. Our main finding when

constructing visual navigation evaluation sets is that for-
ward motion is highly prevalent, and if not carefully ac-
counted for, it can dominate the evaluation data. To create
diverse evaluation sets, we rank potential evaluation trajec-
tories based on how well they can be predicted by simply
moving forward. For each dataset, we select the 100 exam-
ples that are least predictable by this heuristic and use them
for evaluation.
Time Prediction Evaluation Set. Predicting the future
frame after k seconds is more challenging than estimating
a trajectory, as it requires both predicting the agent’s trajec-
tory and its orientation in pixel space. Therefore, we do not
impose additional diversity constraints. For each dataset,
we randomly select 500 test prediction examples.

8.2. Experiments and Results
Training on Additional Unlabeled Data. We include re-
sults for additional known environments in Table 5 and
Figure 11. We find that in known environments, models
trained exclusively with in-domain data tend to perform bet-
ter, likely because they are better tailored to the in-domain
distribution. The only exception is the SCAND dataset,
where dynamic objects (e.g. humans walking) are present.
In this case, adding unlabeled data may help improve per-
formance by providing additional diverse examples.
Known Environments. We include additional visualiza-
tion results of following trajectories using NWM in the
known environments RECON (Figure 12), SCAND (Fig-
ure 13), HuRoN (Figure 14), and Tartan Drive (Figure 15).
Additionally, we include full FVD comparison of DIA-
MOND and NWM in Table 6.

dataset DIAMOND NWM (ours)
RECON 762.734± 3.361 200.969 ± 5.629
HuRoN 881.981± 11.601 276.932 ± 4.346
TartanDrive 2289.687± 6.991 494.247 ± 14.433
SCAND 1945.085± 8.449 401.699 ± 11.216

Table 6. Comparison of Video Synthesis Quality. 16 second
videos generated at 4 FPS, reporting FVD (lower is better).

Planning (Ranking). Full goal-conditioned navigation re-
sults for all in-domain datasets are presented in Table 7.
Compared to NoMaD, we observe consistent improvements
when using NWM to select from a pool of 16 trajectories,
with further gains when selecting from a larger pool of 32.



model RECON HuRoN Tartan SCAND
ATE RTE ATE RTE ATE RTE ATE RTE

Forward 1.92 ± 0.00 0.54 ± 0.00 4.14 ± 0.00 1.05 ± 0.00 5.75 ± 0.00 1.19 ± 0.00 2.97 ± 0.00 0.62 ± 0.00
GNM 1.87 ± 0.00 0.73 ± 0.00 3.71 ± 0.00 1.00 ± 0.00 6.65 ± 0.00 1.62 ± 0.00 2.12 ± 0.00 0.61 ± 0.00
NoMaD 1.95 ± 0.05 0.53 ± 0.01 3.73 ± 0.04 0.96 ± 0.01 6.32 ± 0.03 1.31 ± 0.01 2.24 ± 0.03 0.49 ± 0.01
NWM + NoMaD (→16) 1.88 ± 0.03 0.51 ± 0.01 3.73 ± 0.05 0.95 ± 0.01 6.26 ± 0.06 1.30 ± 0.01 2.18 ± 0.05 0.48 ± 0.01
NWM + NoMaD (→32) 1.79 ± 0.02 0.49 ± 0.00 3.68 ± 0.03 0.95 ± 0.01 6.25 ± 0.05 1.29 ± 0.01 2.19 ± 0.03 0.47 ± 0.01
NWM (only) 1.13 ± 0.02 0.35 ± 0.01 4.12 ± 0.03 0.96 ± 0.01 5.63 ± 0.06 1.18 ± 0.01 1.28 ± 0.02 0.33 ± 0.01

Table 7. Goal Conditioned Visual Navigation. ATE and RPE results on on all in domain datasets, predicting trajectories of up to 2
seconds. NWM achieves improved results on all metrics compared to previous approaches NoMaD [55] and GNM [53].

For Tartan Drive, we note that the dataset is heavily dom-
inated by forward motion, as reflected in the results com-
pared to the ”Forward” baseline, a prediction model that
always selects forward-only motion.

Standalone Planning. For standalone planning, we run the
optimization procedure outlined in Section 7 for 1 step, and
evaluate each trajectories for 3 times. For all datasets, we
initialize µ!y and µω to be 0, and ε

2
!y

and ε
2
ω

to be 0.1. We
use different (µ!x,ε

2
!x

) across each dataset: (→0.1, 0.02)
for RECON, (0.5, 0.07) for TartanDrive, (→0.25, 0.04) for
SCAND, and (→0.33, 0.03) for HuRoN. We include the full
standalone navigation planning results in Table 7. We find
that using planning in the stand-alone setting performs bet-
ter compared to other approaches, and specifically previous
hard-coded policies.

Real-World Applicability. A key bottleneck in deploying
NWM in real-world robotics is inference speed. We evalu-
ate methods to improve NWM efficiency and measure their
impact on runtime. We focus on using NWM with a genera-
tive policy (Section 3.3) to rank 32 four-second trajectories.
Since trajectory evaluation is parallelizable, we analyze the
runtime of simulating a single trajectory. We find that ex-
isting solutions can already enable real-time applications of
NWM at 2-10HZ (Table 8).

NWM +Time Skip +Distillation. +Quant. 4-bit
30.3± 0.2 14.7± 0.1 0.4± 0.1 0.1 (est. [12])

Table 8. Runtime (seconds) on an NVIDIA RTX 6000 Ada card.

Inference time can be accelerated by composing every
adjacent pair of actions (via Eq. 2) then simulating only 8
future states instead of 16 (“Time Skip”), which does not
degrade navigation performance. Reducing the diffusion
denoising steps from 250 to 6 by model distillation [70]
further speeds up inference with minor visual quality loss.3
Taken together, these two ideas can enable NWM to run in
real time. Quantization to 4-bit, which we haven’t explored,
can lead to a ↑4 speedup without performance hit [12].

3Using the distillation implementation for DiTs from https://
github.com/hao-ai-lab/FastVideo

CDiT-L context 2 action only goals 2 ours ours + TTA
0.656 0.655 0.661 0.654 0.652 0.650

Table 9. Results in unknown environment (“Go Stanford”). Re-
porting lpips on 4 seconds future prediction. Lower is better.

Test-time adaptation. Test-time adaptation has shown to
improve visual navigation [13, 16]. What is the relation be-
tween planning using a world model and test-time adapta-
tion? We hypothesize that the two ideas are orthogonal, and
include test-time adaptation results. We consider a simpli-
fied adaptation approach by fine-tuning NWM for 2k steps
on trajectories from an unknown environment. We show that
this adaptation improves trajectory simulation in this envi-
ronment (see “ours+TTA” in Table 9), where we also in-
clude additional baselines and ablations.

https://github.com/hao-ai-lab/FastVideo
https://github.com/hao-ai-lab/FastVideo


Figure 11. Navigating Unknown Environments. NWM is conditioned on a single image, and autoregressively predicts the next states
given the associated actions (marked in yellow) up to 4 seconds and 4 FPS. We plot the generated results after 1, 2, 3, and 4 seconds.



Figure 12. Video generation examples on RECON. NWM is conditioned on a single first image, and a ground truth trajectory and
autoregressively predicts the next up to 16 seconds at 4 FPS. We plot the generated results from 2 to 16 seconds, every 1 second.

Figure 13. Video generation examples on SCAND. NWM is conditioned on a single first image, and a ground truth trajectory and
autoregressively predicts the next up to 16 seconds at 4 FPS. We plot the generated results from 2 to 16 seconds, every 1 second.



Figure 14. Video generation examples on HuRoN. NWM is conditioned on a single first image, and a ground truth trajectory and
autoregressively predicts the next up to 16 seconds at 4 FPS. We plot the generated results from 2 to 16 seconds, every 1 second.

Figure 15. Video generation examples on Tartan Drive. NWM is conditioned on a single first image, and a ground truth trajectory and
autoregressively predicts the next up to 16 seconds at 4 FPS. We plot the generated results from 2 to 16 seconds, every 1 second.


	Introduction
	Related Work
	Navigation World Models
	Formulation
	Diffusion Transformer as World Model
	Navigation Planning with World Models

	Experiments and Results
	Experimental Setting
	Ablations
	Video Prediction and Synthesis
	Planning Using a Navigation World Model
	Generalization to Unknown Environments

	Limitations
	Discussion
	Standalone Planning Optimization
	Experiments and Results
	Experimental Study
	Experiments and Results


