From Sparse Signal to Smooth Motion: Real-Time Motion Generation with
Rolling Prediction Models

Supplementary Material

This supplementary material is structured as follows. In
Sec. A, we provide additional details on the protocol fol-
lowed to collect and process the new GORP dataset. Then,
we describe all the implementation details of our Rolling
Prediction Model (RPM) in Sec. B. We also give more in-
sights on both the synthetic and real benchmarks in Sec. C.
In Sec. D and E, we show quantitative studies on the effects
of modifying the free-running length, and the uncertainty
function, respectively. In Sec. F, we further discuss why
RPM is not fed with the previous prediction, and provide
additional experiments supporting our choice. In Sec. G we
include additional experiments showing how RPM provides
the best accuracy-smoothness trade-off. In Sec. H, we ana-
lyze RPM’s robustness over long runs. In Sec. I, we support
experimentally the choice of the hyperbolic tangent as the
scaling function for PCAF. Finally, we show and discuss ad-
ditional qualitative comparisons with the state of the art in
Sec. J.

A. GORP dataset

Data collection setup. The hardware setup includes a Meta
Quest 3 headset, an Optitrack motion capture system with
an eSync2 unit [5] for synchronization, and a proprietary
synchronization device, QuestSync, as shown in Fig. A. The
QuestSync triggers data capture for both systems, and pro-
vides timestamps from a shared timeline to align the cap-
tured data. The QuestSync pairs with Quest 3 wirelessly
through the same mechanism as controller pairing. It also
utilizes the same synchronization mechanism between the
headset and controllers to synchronize both using its timing
signals. The QuestSync connects to eSync2 with a DIN-
to-BNC cable, and provides it with a 30-Hz SMTPE time-
code [21]. The eSync2 can further subdivide this 30 Hz
signal to 120 Hz for the Optitrack cameras. Since both the
Quest 3 cameras and the Optitrack cameras rely on Infrared
(IR) light for blob tracking, the QuestSync offsets trigger
signals to eSync?2 to prevent IR lights from Optitrack inter-
fering with the Quest 3.

Both the Quest 3 and Optitrack stream data in real time
to a PC that runs a proprietary data collection software. The
Quest 3 streams tracking data through the Android Debug
Bridge (ADB) and Meta Quest Link [17]. Optitrack streams
3D marker data through NatNet SDK [18]. These data
streams include accurate capture timestamps from Quest-
Sync in their protocol, so transmission and software latency
is not a concern.

The Quest 3 already calibrates the headset tracking data

with controller tracking data and hand tracking data inter-
nally. With synchronized marker data from Optitrack, we
want to transform all Quest 3 data into the Optitrack space.
To do so, we attach a marker tree on the Quest 3 headset
as an Optitrack rigid body during data capture. The rigid
transformation of the marker tree in Optitrack space, Mi” T
should represent the same motion as the Quest 3 headset
tracking output in the Quest 3 space, M} *. We compute
the constant transformation T from the Quest 3 space to
the Optitrack space using Eq. A for each capture sequence,
where O represents the constant offset of the headset in the
marker tree rigid body space.

N
T 0" = argminz (T -MYE) — (MMT.0)|?> (A)
T.0 =5

Thanks to the accurate data synchronization, we achieve
a calibration error of less than one millimeter on average
across the entire dataset.

Data streams. We retrieve a rich set of egocentric track-
ing signals from Quest 3. For both the headset and the con-
trollers, it provides a rigid transformation, linear and angu-
lar velocities, and linear and angular accelerations at every
time step, all synchronized and calibrated to the same space.
The rigid transformation is computed through Visual Iner-
tial Odometry (VIO) from stereo images and Inertial Mea-
surement Units (IMUs) at 30 Hz. The velocities and accel-
erations are computed from high-frequency IMUs and then
downsampled to 30 Hz, so they are much more accurate
than finite differences of the positional data. In addition,
each device has a flag to indicate whether its data is valid.
This flag is always true for the headset in our dataset, but it
may be false for the controllers when they are outside of the
field of view of the headset cameras for an extended period.
The origin of the headset is at the center between the eyes,
and the origins of the controllers are somewhere between
the thumb and the index finger, depending on how a user
holds them.

Hand tracking data is exclusive to controller data in
our dataset because it was collected before Multimodal
mode [23] was available on the Quest 3. The hands are
tracked from the headset cameras [9] at 30 Hz. For the pur-
pose of our project, we captured only the rigid transforma-
tions of the wrists, as well as tracking confidence of each
hand.

For body motion ground truth, we use SOMA and
Mosh++ [8, 16] to fit SMPL body parameters to the Op-
titrack markers.



@
2
=
S
=

WIRELESS
SINC . 2 QuestSync

Figure A. Left: the QuestSync device. Right: Meta Quest 3 with
two marker trees attached.

Data protocol. Our dataset consists of 28 participants
playing VR games using controllers and hands for 15 min-
utes respectively. We recruit participants from diverse de-
mographics with various VR experience levels. There are
17 male participants and 11 female participants, ranging
from 20 to 65 years old, who have played in VR for 0 to
10+ times. In a capture session, a participant wears a tight
suit with reflective markers attached and puts on the Quest
3 headset, as shown in Fig. B. After they feel comfortable
in the VR environment, they are asked to choose one of two
controller-based games, Beat Saber [1] or Fruit Ninja [7].
They can choose the game settings freely and start playing.
After about 15 minutes or when they want to stop, they will
take a 5 minutes break. Next, they are asked to choose one
of two hand tracking based games, Hand Physics Lab [10]
or Rogue Ascent VR [19]. They then play in the settings
they choose for another 15 minutes or until they want to
stop. They can also break or stop any time during the ses-
sion. In total, we collected about 17 hours of realistic VR
gameplay data with ground truth body motions.

B. Implementation details

Architecture details. The design of our model, fy, is
inspired by [22]. First, we concatenate the sequence of
past motion &; with a sequence of W blank pose tokens
(i.e., all zeros), which are passed through a linear layer and
merged with a sinusoidal positional encoding (PE). A cross-
attention layer then uses these tokens as queries to attend
to the past and current tracking inputs, C;, which are fed
as keys and values after adding a sinusoidal PE. The result
is processed by four Transformer encoder layers [24] with
GeLU activation functions [11]. The first M output fea-
ture vectors are discarded, retaining only the last W. Each
attention layer incorporates layer normalization and a resid-
ual connection. Finally, a linear layer transforms the out-
put features into the predicted poses, fo(Xt,Ct), which are
then used by our Prediction Consistency Anchor Function
(PCAF) to update the previous prediction, P;_;, into P;.
The dimension of the Transformer latent space is set to 512.
Feature vectors have a dimension of 132 for poses in &} and
Py, and 54 for tracking inputs in C;.

Further implementation details. We optimize RPM
using Adam [15] and train it for 80k iterations with a batch
size of 512. The initial learning rate is set to 3e-4, which
decreases to 3e-5 after 50k iterations. Weight decay is set
to le-4. The weights for all losses in Eq. 3 are set to 1. Dur-
ing training, we simulate tracking signal losses by dropping
a segment of tracking inputs of length L ~ U(1, I+1+FR)
with a 10% probability, where I is the number of past track-
ing inputs used, and FR the maximum free-running length.
For all baselines, L ~ U(1, Iyaseline)> Where Tpaeline i the
length of the tracking input sequence used by each base-
line. For the AGRoL baseline [4], we generate motion for
the first 196 frames offline, as proposed in the original im-
plementation. We then use this output to autoregressively
inpaint a new pose at the end. For RPM, both the motion
context and the initial prediction are initialized with ground
truth poses. To avoid evaluating during this period, the first
second of all sequences is discarded.

C. Benchmarks details

Synthetic inputs: AMASS (A-P1 and A-P2). We build
the motion controllers (MC) synthetic setup on AMASS
in the same way as prior works [4, 12], that is, taking the
head and wrists joint positions as tracking inputs. For the
hand-tracking (HT) setup, we simulate gaps in the track-
ing inputs. Specifically, for each wrist in each motion se-
quence, we simulate periods of tracking signal loss with
length L ~ U(0.5,2) seconds, with a 2.5% probability of
starting at a given timestep. We also enforce a distance of 2
s between consecutive gaps so we can measure the models’
ability to recover from a tracking signal loss.

Real inputs: GORP. The GORP dataset was randomly
split into subject-independent training and test sets, ensur-
ing an 80/20 proportion of total duration, respectively. All
models were trained using both sequences with real MC or
HT sensing signals. We approximated the 6-DOF of the
wrists and the SMPL head by adding a fixed offset to the
motion controllers and headset position. The confidence
threshold of the hand-tracking system was set to 0.8, result-
ing in 3.16/1.50% of missing left/right hands in the training
set and 4.05/1.49% in the test set. The average length of
tracking signal loss segments is 0.84s for the training set
and 0.77s for the test set.

D. Analysis of the free-running length

In Fig. C, we show the effects of the free-running length on
the accuracy and smoothness of the generated motion for
A-P1. Overall, we observe that longer free-running periods
result in higher accuracy (i.e., lower MPJRE and MPJPE),
with values converging to the best performance at around
50 frames (0.83s). Regarding smoothness, longer FR val-
ues cause a slight increase in jitter (from 3.8 to 4.4) and a



/angpilar_accel/

/ang{ilar_accel/LCON/
/angglar_accel/LCON/X @
[angular_accel/HMD/Z @
[angular_accel/HMD/Y @
Jangular_accel/HMD/X

\ ngular_vel/LC!
I AL N /enguiar_veiLconry @
/pngular_vel/LCON/X @
angular_vel/HMD/Z
| fangular_vel/HMD/Y
angular_vel/HMD/X

Figure B. We capture both tracking signals from the Quest 3 headset and ground truth body motions from Optitrack. The Quest 3 tracking
signal includes transformations of the headset and the controllers (or the wrists — not shown here), linear velocities (purple arrows), linear
accelerations (cyan arrows), angular velocity (bottom right), and angular accelerations (bottom left). The velocities and accelerations are
from high-frequency IMU data. Ground truth body motions are solved from labeled 3D marker data (colored points).

MPJRE MPJPE MPJVE
5.5 9 28
27
g 50 8 26
o £ Q
g 45 o7 E 25
°
6 24
4.0 -
5
Jitter AUJ T-S AUJ ST
44 140
120 110
W a2 %100 %100
£ € €
4.0 o 8
3.8 40 70
0 50 100 [) 50 100 0 50 100

Free-Running length (FR) Free-Running length (FR) Free-Running length (FR)

Figure C. Free-running length. We observe that the free-running
stage during RPM’s training is essential for making the network
robust to mismatches between tracking inputs (C;) and previ-
ously generated motion (X}). Both accuracy (MPJRE, MPJPE)
and smoothness during transitions (AUJ T-S/S-T) improve signifi-
cantly with longer free-running periods.

reduction in the AUJ for both types of transition. We hy-
pothesize that the improved smoothness during transitions
is due to a better simulation at training time of conditions
encountered during inference, such as mismatches between
motion context and tracking inputs after periods of tracking
signal loss (see Fig. 3, right). The best smoothness val-
ues during transitions are achieved at around FR=90 frames
(1.5s). For all our experiments, we use FR=60 frames (15s),

as it offers a good balance between accuracy, smoothness,
and training efficiency.

E. Analysis of the uncertainty function

In Sec. 3.2, we introduce the PCAF reparameterization (Eq.
2), which incorporates an uncertainty function to regulate
the correction magnitude allowed at each future time hori-
zon. The objective is to model the increasing uncertainty of
future motion as the prediction extends further into the fu-
ture. Consequently, the corrections applied to previous pre-
dictions should scale proportionally with this uncertainty.
We explored three different uncertainty functions: cosine
(Eq. B), cosine squared (Eq. C), and linear (Eq. D):

T+1
Fuos(7) = 1 — cos ( - 5), (B)
+1 w2
Jeossq.(T) = 1 — cos (TW . g) , ©
1
fin(r) = T, (D)

where 7 € [0, W — 1] represents the distance to the present,
in frames. A visualization of the three functions with
W =10 is provided in Fig. D. The results of RPM trained on
A-P1 are presented in Tab. A. While accuracy metrics are
comparable across the three functions, the cosine function



== Cosine
Cosine squared
e | inear

Uncertainty
o
18]
o

Timestep

Figure D. Visualization of the uncertainty functions. We ex-
plored three uncertainty functions: cosine (Eq. B), cosine squared
(Eq. C), and linear (Eq. D). In all cases, the uncertainty level in-
creases with the distance from the present.

Uncertainty (U) MPJRE MPIJPE MPIVE lJitter AUJrs AUls.t

Cosine 3.82 5.18 22.83 4.35 60.51 69.02
Cosine squared 3.92 5.37 22,51 4.28 60.85 78.97
Linear 3.92 5.33 22.05 425 7T1.55 8047

Table A. Comparison of different uncertainty functions. We
observe that modifying the uncertainty function of PCAF primar-
ily impacts the smoothness during synthesis-to-tracking (AUJs.t)
and tracking-to-synthesis (AUJ1.s) transitions.

produces smoother motion during transitions (as shown by
lower AUJr.g and AUJg. 7). Given the importance of smooth
transitions for the problem we tackle in this work, we se-
lected the cosine function as the uncertainty function for all
our experiments.

F. On the iterative prediction refinement

RPM uses the PCAF reparameterization to refine the previ-
ous prediction, P;_;. However, this previous prediction is
not fed directly to fy, which only observes the previously
generated motion, &}, and the history of tracking inputs,
C;. At the end of Sec. 3.2, we note that X; serves as
a proxy for the previous prediction P;_; under the deter-
ministic paradigm, which assumes that only a single future
is predicted, as opposed to a multimodal distribution (i.e.,
stochastic prediction). To validate this claim, we train a ver-
sion of RPM that is explicitly fed with P;_;, thereby pro-
viding direct access to the previous prediction. The results,
shown in Tab. B, support our hypothesis: explicit access
to P,_1 neither improves accuracy nor generates smoother
results. We also train another version where, instead of
feeding the previous prediction, we provide a noisy version
of it to simulate the uncertainty of the future as a decreas-
ing signal-to-noise ratio, inspired by rolling diffusion mod-
els [20, 25]. Similarly, no significant improvement is ob-
served over our simpler definition. Nonetheless, we hypoth-
esize that these alternative definitions could be beneficial
if RPM were extended to refine stochastic human motion

Forward function MPJRE MPJPE MPIVE lJitter AUJrs AUJs.T

fo (X, Ce) 3.82 5.18 22.83 4.35 60.51 69.02
fo(Xt,Ct,Pt—1) 3.80 5.19 2247 412 8275 65.22

fo(xt,ct,P;“ij) 3.78 513 22,97 5.40 55.74 103.23

Table B. Study on different techniques to refine the rolling pre-
diction with RPM. We observe that explicitly feeding the previ-
ous prediction (P;—1) leads to results similar to those of our sim-
pler model (1st row). Similarly, simulating the uncertainty of the
previous prediction by adding noise with increasing variance to it
(P}, as proposed in [20], does not lead to a better performance
than RPM either.

predictions, where previous predictions may not be directly
inferable from X; due to their multimodal nature.

G. Accuracy-smoothness trade-off

In Sec. 4, we discussed how current state-of-the-art meth-
ods lag behind RPM in terms of smoothness and, conse-
quently, motion realism. In return, our model sacrifices
some accuracy. One might think that state-of-the-art meth-
ods could also produce such smooth results if they were
willing to sacrifice accuracy, for instance, by incorporat-
ing a low-pass filter. To test this hypothesis, we applied
a 1€ filter [2] to the output of our baselines. The filter pa-
rameters were optimized through grid search to maximize
the smoothness metrics. However, we found that achieving
competitive smoothness introduced excessive latency to the
generated motion, significantly reducing accuracy. To fur-
ther explore this accuracy-smoothness trade-off, we iden-
tified another set of filter parameters offering the best bal-
ance between accuracy and smoothness. We refer to these
two sets of parameters as smooth and reactive, respectively.
Results in Tab. C demonstrate that all baselines still pro-
duce motion with more discontinuities than RPM when us-
ing a mild low-pass filter that minimally affects accuracy.
When targeting smoothness levels comparable to RPM for
synthesis-to-tracking transitions, their accuracy drops by
more than 50%, placing them far behind RPM in terms of
accuracy. We illustrate this trade-off in Fig. E. Our model
provides the optimal accuracy-smoothness trade-off, partic-
ularly during synthesis-to-tracking transitions, which was
the primary goal of our work.

H. Performance over time

Autoregressive methods may experience degeneration is-
sues over time. To showcase RPM’s robustness and its po-
tential for real-world deployment, we plot the error evolu-
tion over 25 seconds in the real MC/HT setups using the
GORP dataset in Fig. F. We observe that the error remains
stable in both setups. Additionally, the wrist error does not
escalate and stays close to the overall error’s magnitude.



Model MPJRE MPJPE MPJVE Jitter  Plpg AUl Pls AUJg 1
AvatarPoser [12] 5.62 8.38 44.26 26.10 89.87 2215.07 86.93 2133.20
+ 1€ (reactive)  5.77 8.84 40.45 9.34  26.30  429.34 2593  389.75
+ 1€ (smooth)  6.13 10.24  43.69 6.21 17.46  129.79 16.48 110.13
EgoPoser [14] 4.61 6.29 42.91 29.15 461.18 3356.38 567.42 3773.29
+ 1€ (reactive) 4.75 6.71 34.63 7.57 85.27 491.61 108.95 606.55
+ 1€ (smooth)  5.26 8.51 40.44 4.89 2837 93.64 38.00  190.45
SAGE [6] 4.21 5.50 46.38 33.55 1056.33 6337.79 1073.65 4131.33
+ 1€ (reactive)  4.40 6.06 35.90 9.82 178.16 1064.44 188.51 733.46
+ 1€ (smooth)  4.99 8.09 41.22  6.28 53.90 308.76  56.25  306.36
AvatarJLM [26] 4.18 4.59 27.30 12.79 114.36 811.13 901.75 2008.13
+ 1€ (reactive)  4.44 5.44 29.35 4.67 19.82 35.86 156.25  242.25
+ 1€ (smooth)  5.07 7.83 39.66 4.03 1047 87.31 46.31 102.73
HMD-Poser [3] 3.34 4.04 2234 735 23.84 302.58 461.91 1236.47
+ 1€ (reactive)  3.71 5.00 27.18  3.98 9.83 69.17 68.38  186.21
+ 1€ (smooth)  4.55 7.54 39.06 4.10 10.55 75.98 23.75 60.14
RPM - Reactive 3.82 5.18 2283 435 15.28 60.51 18.98 69.02
RPM - Smooth 3.98 5.44 24.04 4.29 8.41 84.81 12.12 50.23

Table C. Comparison of RPM with baselines using 1€ filters on A-P1-HT. Applying both versions of the 1€ filter (reactive and smooth
versions, see Sec. G) to baselines improves smoothness but significantly reduces accuracy because of latency. To match RPM’s smoothness
levels (AUJs.t), baselines must sacrifice over 50% of their accuracy (MPJPE).

Synthesis-to-Tracking transitions

Peak Jerk vs. Error Area Under Jerk vs. Error

Peak Jerk vs. Error

Tracking-to-Synthesis transitions

Area Under Jerk vs. Error AvatarLM

103

10%

£10°

hP-loz .
B}

PJs.r
g
AUJ

10?

3 5

10t 10° 4

AvatarPoser
—— SAGE
—— EgoPoser
~—— HMD-Poser
—— RPM (Ours)

103

AUJ1.g

Ours - Reactive
Ours - Smooth

Original

+1€ (reactive)

10?

8 10 4 8 10
MPJPE MPJPE

-

T
4

OWXV %

+1€ (smooth)
8 10 4 10
MPJPE MPJPE

Figure E. Accuracy-smoothness trade-off on A-P1-HT. Baselines require significant accuracy loss to achieve competitive smoothness
when combined with traditional low-pass filters. On synthesis-to-tracking transitions, RPM achieves the best balance to date, positioning
itself in the lower-left of the plot and surpassing the previous Pareto frontier set by HMD-Poser. At the same time, RPM attains a similar
trade-oft as HMD-Poser and AvatarJLM on tracking-to-synthesis transitions.

o Error over time on GORP (Real MC)

Error over time on GORP (Real HT)

—— All Joints
~——— Wrists

1 — Al joints
—— Wrists

Mean Error (cm)
« =

o
o

o

H 20 25 0 5 20 25

10 15 10 15
Seconds Seconds

Figure F. Error evolution over time. RPM’s error on both real
MC/HT setups in the GORP dataset remains stable over time,
demonstrating its robustness in long executions. Wrist error also
remains stable and is comparable in magnitude to the overall error.

Interestingly, despite the tracker position being available,
the network still struggles to match it closely. This issue is
commonly observed in methods synthesizing full-body mo-
tion from sparse tracking inputs [13]. We argue that this
is expected in RPMs, as certain accuracy is traded off for
smoother and more realistic motion, as discussed in Sec. G.

I. Scaling function in PCAF

At the end of Sec. 3.2, we discussed the rationale behind
selecting the hyperbolic tangent as the scaling function in
PCAF. In this section, we present the corresponding ex-
perimental validation. We trained RPM with PCAF using
three functions: the hyperbolic tangent, a scaled sigmoid
(2% sigmoid(...) — 1), and a linear function constrained be-
tween -1 and 1 (referred to as straight). As shown in Tab. D,
the model trained with the hyperbolic tangent produces the
smoothest synthesis-to-tracking transitions. The straight
function achieves similar accuracy to the hyperbolic tan-
gent, but with slightly more abrupt transitions. In contrast,
the sigmoid function leads to transitions that are too abrupt.
We hypothesize that the sigmoid function generates large
gradients when substantial correction is needed, promoting
strong corrections during prediction refinement rather than
improving long-term predictions. This issue does not occur



MPIJPE MPJVE Jitter AUJrg AUJs.t
RPM - Reactive
Tanh 5.18 22.83 4.35 60.51 69.02
Sigmoid 5.21 23.45 5.14 55.11 137.88
Straight 5.11 22.58 430 61.55 71.19
RPM - Smooth
Tanh 5.59 23.80 5.05 58.70 175.86
Sigmoid 5.63 25.32 6.76 232.50 431.62

Straight 5.59 23.69 5.37 53.68 187.27

Table D. Effect of PCAF scaling function iA-P1-HT. We observe
how the hyperbolic tangent and the straight functions provide the
best accuracy and transitions smoothness.

with the other two functions. We selected the hyperbolic
tangent for its continuity and differentiability.

J. Additional qualitative results

We provide additional visual comparisons in Fig. G for A-
P1 and in Fig. H for GORP. In this section, we discuss sev-
eral improvements that RPM offers compared to the state of
the art in terms of visual quality. We refer the reader to the
attached videos, which showcase all the qualitative results
from the main paper and supplementary material. Addition-
ally, we include a demo video highlighting RPM’s strengths
in comparison to the state of the art.

Synthesis-to-tracking transitioning. These additional
visual comparisons reinforce our observations from Sec.
4.3: only our method generates smooth and realistic
synthesis-to-tracking transitions. While AvatarJLM and
HMD-Poser repeatedly snap the hand to the recovered
tracking signal after each loss, RPM instead smoothly
catches up with the tracking signal’s position and motion
dynamics.

Robustness to noise. RPM demonstrates greater robust-
ness to noisy tracking inputs. By reformulating the pose
generation task as a sequential refinement of previously pre-
dicted motion, the network learns to better handle sudden
false hand-tracking detections (Fig. H-left). We hypothe-
size that, at training time, these false positives fail to provide
a signal capable of refining high-frequency motion details,
which are incorporated during the last refining step before
the pose generation. Instead, the network leverages such
new signal to correct the low-frequency characteristics of
the long-term predicted motion. However, these corrections
do not persist under noisy hand-tracking inputs, as subse-
quent accurate hand-tracking inputs override them.

Full-body pose coherence. Lastly, our method main-
tains the coherence of the full-body pose along time. The
main reason behind this is RPM’s explicit conditioning
on the previously generated motion (X;), instead of just
the past and current tracking inputs (C;) as other methods
do. In GORP, this ensures that dynamic upper-body mo-

tion leading to torso rotations does not result in unrealistic
lower-body rotations (Fig. H-right). Consequently, we ob-
serve more expressive lower-body motion, including step-
ping while turning. Conversely, in AvatarJLM and HMD-
Poser, the tendency to align the lower-body with an aver-
age pose often causes severe foot sliding — i.e., moving feet
while standing as if the person floated. Notably, foot sliding
remains a common issue across all methods for this task, in-
cluding ours. Further research is needed in this area, as we
hypothesize that the lack of body shape awareness and the
reliance on headset-driven motion are potential reasons for
it. We highlight the value of GORP as a benchmark for ad-
dressing this challenge, as its motion is predominantly in
place, featuring frequent small in-place steps, knee torsion,
and significant upper-body movement. These characteris-
tics require networks to adapt the entire kinematic chain,
including the lower-body and the spine, to minimize foot-
sliding artifacts.

References

[1] Beat Saber on Meta Quest, last visited: 2024/11/10.
https://www.meta.com/experiences/beat -
saber/2448060205267927/. 2

[2] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 1€ filter:
a simple speed-based low-pass filter for noisy input in in-
teractive systems. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 2527-2530,
2012. 4

[3] Peng Dai, Yang Zhang, Tao Liu, Zhen Fan, Tianyuan Du,
Zhuo Su, Xiaozheng Zheng, and Zeming Li. Hmd-poser:
On-device real-time human motion tracking from scalable
sparse observations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
874-884,2024. 5

[4] Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke,
Ali Thabet, and Artsiom Sanakoyeu. Avatars grow legs:
Generating smooth human motion from sparse tracking in-
puts with diffusion model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 481-490, 2023. 2

[5] eSync2 - A PoE Synchronization Device, last vis-
ited:  2024/11/10. https ://optitrack . com/
accessories/sync-networking/esync-2/. 1

[6] Han Feng, Wenchao Ma, Quankai Gao, Xianwei Zheng, Nan
Xue, and Huijuan Xu. Stratified avatar generation from
sparse observations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
153-163, 2024. 5

[7] Fruit Ninja on Meta Quest, last visited: 2024/11/10.
https://www.meta.com/experiences/fruit-
ninja/2215140511885250/.2

[8] Nima Ghorbani and Michael J. Black. SOMA: Solving
optical marker-based mocap automatically. In Proc. In-
ternational Conference on Computer Vision (ICCV), pages
11117-11126, 2021. 1

[9] Shangchen Han, Po-Chen Wu, Yubo Zhang, Beibei Liu, Lin-
guang Zhang, Zheng Wang, Weiguang Si, Peizhao Zhang,


https://www.meta.com/experiences/beat-saber/2448060205267927/
https://www.meta.com/experiences/beat-saber/2448060205267927/
https://optitrack.com/accessories/sync-networking/esync-2/
https://optitrack.com/accessories/sync-networking/esync-2/
https://www.meta.com/experiences/fruit-ninja/2215140511885250/
https://www.meta.com/experiences/fruit-ninja/2215140511885250/

GT ﬂ E !
e
&>
Smooth
recovery
from
RPM(Ours) tracking loss
ﬂ § ¢----> g
Ava J LM brupt transitions
g i
HMD-Poser E

A i ! <>

Abrupt transitions

X

Average

pose
S
~3

=~

Figure G. More qualitative results on synthetic hand-tracking (HT) inputs (A-P1). On the left, we observe that when the left-hand
tracking is lost, all methods fail to generate the grabbing action. Once the hand-tracking signal is recovered, AvatarJLM and HMD-Poser
snap the hand abruptly to correct the mistake, whereas our method generates a smoother and more realistic transition to match the signal
again. On the right, we present an example illustrating how state-of-the-art methods tend to generate an average pose as uncertainty
increases during prolonged hand-tracking signal losses. In contrast, RPM produces motion that remains coherent with the past context.

Yujun Cai, Tomas Hodan, Randi Cabezas, Luan Tran,
Muzaffer Akbay, Tsz-Ho Yu, Cem Keskin, and Robert
Wang. Umetrack: Unified multi-view end-to-end hand track-
ing for VR. In SIGGRAPH Asia 2022 Conference Papers, SA
2022, Daegu, Republic of Korea, December 6-9, 2022, 2022.
1

[10] Hand Physics Lab on Meta Quest, last visited: 2024/11/10.
https://www.meta.com/experiences/hand-
physics-1ab/3392175350802835/. 2

[11] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 2

[12] Jiaxi Jiang, Paul Streli, Huajian Qiu, Andreas Fender, Larissa
Laich, Patrick Snape, and Christian Holz. Avatarposer: Ar-
ticulated full-body pose tracking from sparse motion sens-
ing. In European conference on computer vision, pages 443—
460. Springer, 2022. 2, 5

[13] Jiaxi Jiang, Paul Streli, Xuejing Luo, Christoph Gebhardt,
and Christian Holz. Manikin: biomechanically accurate
neural inverse kinematics for human motion estimation. In
European Conference on Computer Vision, pages 128—146.
Springer, 2024. 5

[14] Jiaxi Jiang, Paul Streli, Manuel Meier, and Christian Holz.
Egoposer: Robust real-time egocentric pose estimation from
sparse and intermittent observations everywhere. In Eu-
ropean Conference on Computer Vision, pages 277-294.
Springer, 2025. 5

[15] Diederik P Kingma. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 2

[16] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Ger-
ard Pons-Moll, and Michael J. Black. AMASS: Archive of
motion capture as surface shapes. In International Confer-
ence on Computer Vision, pages 5442-5451, 2019. 1

[17] Meta Quest Link Cable — Connect PC to VR Headset,
last visited: 2024/11/10. https://www.meta.com/
quest/accessories/link—-cable/. 1

[18] Optitrack - NatNet SDK, last visited: 2024/11/10. https:
//optitrack.com/software/natnet-sdk/. 1

[19] Rogue Ascent VR on Meta Quest, last visited: 2024/11/10.
https://www.meta.com/experiences/rogue—
ascent-vr/5395586720470296/. 2

[20] David Ruhe, Jonathan Heek, Tim Salimans, and Emiel


https://www.meta.com/experiences/hand-physics-lab/3392175350802835/
https://www.meta.com/experiences/hand-physics-lab/3392175350802835/
https://www.meta.com/quest/accessories/link-cable/
https://www.meta.com/quest/accessories/link-cable/
https://optitrack.com/software/natnet-sdk/
https://optitrack.com/software/natnet-sdk/
https://www.meta.com/experiences/rogue-ascent-vr/5395586720470296/
https://www.meta.com/experiences/rogue-ascent-vr/5395586720470296/

RPM !Ours)
AvatarJLM matches

HMD-!!ser

Hand -tracking
error for
right hand

A
A
Instantly

J

W@»%%
Pe =B TSP =D

wrong
tracking

G

SCEZe

e R

A
k
gt
i

Average
ower-body

pose
. .,

N

N,

rgDe e D ~SP-
a‘_‘@‘@*

Figure H. More qualitative results on real hand-tracking (HT) inputs (GORP). On the left, we observe that false-positive hand-tracking
detections cause AvatarJLM and HMD-Poser to disrupt the continuity of the previous motion by abruptly aligning with the new tracking
input. In contrast, RPM generates motion that maintains coherence with prior predictions, thereby avoiding instantaneous hand snapping.
On the right, we see that state-of-the-art methods often generate lower-body average poses, simply aligning their orientation with the
tracking inputs. Instead, RPM preserves coherence with the prior lower-body motion, producing more realistic full-body motion.

(21]

(22]

(23]

(24]

[25]

[26]

Hoogeboom. Rolling diffusion models. In Forty-first In-
ternational Conference on Machine Learning, 2024. 4
SMPTE Timecode, last visited: 2024/11/10. https://
en.wikipedia.org/wiki/SMPTE_timecode. 1
Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel
Cohen-or, and Amit Haim Bermano. Human motion diffu-
sion model. In The Eleventh International Conference on
Learning Representations, 2023. 2

User Simultaneous Hands and Controllers (Multimodal), last
visited: 2024/11/10. https://developers.meta.
com/horizon/documentation/unity/unity -
multimodal/. 1

A Vaswani. Attention is all you need. Advances in Neural
Information Processing Systems, 2017. 2

Zihan Zhang, Richard Liu, Rana Hanocka, and Kfir Aber-
man. Tedi: Temporally-entangled diffusion for long-term
motion synthesis. In ACM SIGGRAPH 2024 Conference Pa-
pers, pages 1-11, 2024. 4

Xiaozheng Zheng, Zhuo Su, Chao Wen, Zhou Xue, and

Xiaojie Jin. Realistic full-body tracking from sparse ob-
servations via joint-level modeling. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 14678-14688, 2023. 5


https://en.wikipedia.org/wiki/SMPTE_timecode
https://en.wikipedia.org/wiki/SMPTE_timecode
https://developers.meta.com/horizon/documentation/unity/unity-multimodal/
https://developers.meta.com/horizon/documentation/unity/unity-multimodal/
https://developers.meta.com/horizon/documentation/unity/unity-multimodal/

	GORP dataset
	Implementation details
	Benchmarks details
	Analysis of the free-running length
	Analysis of the uncertainty function
	On the iterative prediction refinement
	Accuracy-smoothness trade-off
	Performance over time
	Scaling function in PCAF
	Additional qualitative results

