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Supplementary Material

This document reports additional material concerning CVPR paper “Stereo Anywhere: Robust Zero-Shot Deep Stereo Matching Even
Where Either Stereo or Mono Fail”. Specifically:

• First, we present an extended description of our proposed architecture in Sec. 3, including detailed formulations of the monocular
correlation volume (Sec. 7.1), differentiable monocular scaling (Sec. 7.2), cost volume augmentation (Sec. 7.3), volume truncation
(Sec. 7.4), and training supervision (Sec. 7.5).

• We then report extensive ablation studies in Sec. 8 demonstrating how our stereo matching architecture effectively generalizes across
different state-of-the-art monocular depth networks (Sec. 8.1), showing consistent improvements over baseline stereo methods regardless
of the specific VFM employed. Then, we show qualitatively the impact of the truncated cost volume augmentation on disparity estimation
on non-Lambertian surfaces (Sec. 8.2). Furthermore, we include an analysis of runtime performance and memory consumption (Sec. 8.3)
across different input resolutions and VFMs.

• Finally, we present extensive qualitative results in Sec. 9 across multiple datasets, demonstrating the effectiveness of our method in
dealing with challenging scenarios such as non-Lambertian surfaces, transparent objects and textureless regions.

7. Method Overview: Additional Details
In this section, we enrich the description of Stereo Anywhere architecture.

7.1. Monocular Correlation Volume
Given the monocular depth estimations ML ∈ R1×H×W and MR ∈ R1×H×W , we aim to estimate the normal maps ∇L ∈ R3×H
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4 . We decide to use ∇L and ∇R instead of extracting
additional features from ML and MR because ML and MR already provide high-level information. Furthermore, normal maps can handle
depth inconsistencies between ML and MR that can occur for example when a foreground object is visible only in a single view. We
downsample ML and MR to 1/4 – bilinear interpolation, then we estimate ∇L and ∇R – spatial gradient:
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where λ is a gain factor that is proportional to W , which permits to achieve scale-invariant normal maps.
Given the absence of texture in normal maps, VM will be not ambiguous only in edges. To alleviate this problem, we

segment VM – the relative depth priors from ML and MR: doing so we aim to reduce the ambiguity by forcing the matching
only in similar depth regions (e.g., foreground objects cannot match with background object since the correlation score is
masked to zero). Considering Eq. (3), we calculate masks ML

n and MR
n as follows:
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To further deal with the ambiguity, we improve the 3D Convolutional Regularization model ϕA – an adapted version of
CoEx [4] correlation volume excitation that exploits both views ML, MR:

(V′s
M )fijk = σ ((fL

s)fij)⊙ σ ((fR
s)fik)⊙ (Vs

M )fijk (10)

where V′s
M is the excited volume, σ(·) is the sigmoid function, ⊙ is the element-wise product, Vs

M ∈ RF×H
s ×W

s ×W
s

is an intermediate correlation feature volume at scale s with F features inside module ϕA, fLs ∈ RF×H
s ×W

s ×1 and fR
s ∈

RF×H
s ×1×W

s are shallow 2D conv-features extracted from ML and MR downsampled at proper scale.

7.2. Differentiable Monocular Scaling
As detailed in Sec. 3.2, volume VD

M is used also to estimate the coarse disparity maps D̂L D̂R, while volume VC
M is utilized

to estimate confidence maps ĈL ĈR. D̂L ĈL and D̂R ĈR are used to scale respectively ML and MR. As described in
Eq. (4), we can estimate left disparity from a correlation volume – a softargmax operation on the last W dimension of VD

M

and – the relationship between left disparity and correlation. Here we report an extended version of Eq. (4) with the explicit
formula for softargmax operator:
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At the same time, given the relationship between right disparity and correlation dR = kL − kR we can estimate the right
disparity performing a softargmax on the first W dimension of VD

M :
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Disparity maps D̂L D̂R are used in combination with confidence maps ĈL ĈR to obtain a robust scaling. We present
an expanded version of the information entropy based confidence estimation (Eq. (5)), with the explicit formula for softmax
operator:
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In the same way, we estimate right confidence map ĈR performing a softmax operation on the first W dimension of VC
M :
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To improve the robustness of the scaling, we introduce a softLRC operator to classify occlusions as low-confidence pixels
and consequentially mask out them from ĈL and ĈR. We define the softLRC operator as follows:

softLRCL(D,DR) =
log (1 + exp (TLRC − |DL −WL(DL,DR)|))

log(1 + exp(TLRC))
(15)

where TLRC = 1 is the LRC threshold and WL(DL,DR) is the warping operator that uses the left disparity DL to warp the
right disparity DR into the left view.

Finally, we can estimate the scale ŝ and shift t̂ – a differentiable weighted least-square approach. We report here the
expanded form of Eq. (6):
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ŝMR + t̂

�
− D̂R

i
F

(16)

where ∥·∥F denotes the Frobenius norm.

7.3. Cost Volume Augmentations
Volume augmentations are necessary when the training set – e.g., Sceneflow [61] – does not model particularly complex sce-
narios where a VFM could be useful, for example, when experiencing non-Lambertian surfaces. Without any augmentation
of this kind, the stereo network would simply overlook the additional information from the monocular branch. As detailed
in the main paper, we propose three volume augmentations and a monocular augmentation to overcome this issue. In this
supplementary section, we explain the rationale behind the introduction of each augmentation:
• Volume Rolling: non-Lambertian surfaces such as mirrors and glasses violate the geometry constraints, leading to a high

matching peak in a wrong disparity bin. This augmentation emulates this behavior by shifting some among the matching
peaks to a random position: consequentially, Stereo Anywhere learns to retrieve the correct peak from the other branch.

• Volume Noising and Volume Zeroing: we introduce noise and false peaks into the correlation volume to simulate scenarios
with texture-less regions, repeating patterns, and occlusions.

• Perfect Monocular Estimation: instead of acting inside the correlation volumes, we can substitute the prediction of the
VFM with a perfect monocular map – the ground truth normalized between [0, 1]. This perfect prediction is noise-free and
therefore the monocular branch of Stereo Anywhere will likely gain importance during the training process.



7.4. Volume Truncation
The proposed volume truncation strategy further helps Stereo Anywhere to handle mirror surfaces. Here we introduce
additional details about fuzzy operators – useful to make a boolean expression differentiable – and the sigmoid curve used to
truncate the volume VS – the truncate mask (T)ij =
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We can replace operators AND (∧), OR (∨), NOT (¬) and GREATER (>) inside T with the fuzzy counterparts
ANDF(A,B) = A · B, ORF(A,B) = A + B − A · B, NOTF(A) = 1 − A and GREATERF(A,B) = σ(A − B), ob-
taining the fuzzy truncate mask TF:
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where TA
F and TB

F are respectively the left section and the right section of the ORF of mask TF. Next, we can apply threshold
Tm to achieve the final fuzzy mask T′

F as follows:

(T′
F)ij = σ ((TF)ij − Tm) (18)

.
Finally, we can use the fuzzy truncate mask T′

F and the scaled monocular map M̂L to generate the sigmoid-based trunca-
tion volume VT :
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where G = 0.9 attenuates the impact of the truncation. The correlation volume VS is truncated through an element-wise
product with VT .

7.5. Training Supervision
We supervise the iterative module – the L1 loss with exponentially increasing weights [55]:

LA =

LX

l=1

γL−l∥Dl −DLgt∥1 (20)

where L is the total number of iterations made by the update operator and DLgt is the ground truth of the left disparity map.
Furthermore, we supervise the outputs D̂L, D̂R, M̂L, M̂R, ĈL, ĈR of the monocular branch – respectively L1 loss and
normal loss for D̂L D̂R, L1 loss for M̂L M̂R and Binary Cross Entropy (BCE) loss for ĈL ĈR:
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where ψ = 10 is the normal loss weight, DRgt is the ground truth of the right disparity map, ∇̂L ∇̂R are the normal maps
estimated respectively from D̂L D̂R, ∇L · ∇̂L and ∇R · ∇̂R are the dot product between normal maps, and CLgt CRgt are the
confidence ground truth. The final supervision loss L is the sum of all previous partial losses:

L = LA + LB + LC + LD + LE + LF + LG (26)



8. Additional Ablation Studies
In this section, we report additional studies concerning the performance of Stereo Anywhere.

8.1. Generalization to Different VFMs
In the main paper, we assumed Depth Anything v2 [121] as the VFM fueling Stereo Anywhere, since it is the latest state-
of-the-art model being published at the time of this submission. However, any VFM for monocular depth estimation would
be suitable for this purpose, either current or future ones. To confirm this argument, we conducted some experiments by
replacing Depth Anything v2 with other VFMs that appeared on arXiv in the last months, yet that are not been officially
published. Among them, we select DepthPro [6], MoGe [109] and Lotus [33].

Table 5 shows the results achieved by Stereo Anywhere variants – different VFMs on Booster and LayeredFlow. We can
appreciate how the different flavors of Stereo Anywhere always outperform the baseline stereo model [55]. In general, Depth
Anything v2 remains the best choice to deal with non-Lambertian surfaces, with DepthPro allowing for small improvements
on some metrics over the LayeredFlow dataset.

Booster (Q) LayeredFlow (E)

Model Error Rate (%) Avg. Error Rate (%) Avg.
> 2 > 4 > 6 > 8 (px) > 1 > 3 > 5 (px)

Baseline [55] 17.84 13.06 10.76 9.24 3.59 89.21 79.02 71.61 19.27
Stereo Anywhere – DAv2 [121] 9.01 5.40 4.12 3.34 1.21 81.83 57.66 45.12 11.20
Stereo Anywhere – DepthPro [6] 10.53 7.02 5.79 5.13 2.40 78.76 61.11 51.04 14.43
Stereo Anywhere – MoGe [109] 9.47 5.77 4.49 3.84 1.44 84.27 68.67 58.89 16.22
Stereo Anywhere – Lotus [33] 12.44 8.71 7.58 6.98 3.21 86.04 62.75 49.47 13.98

Table 5. Non-Lambertian Generalization of Stereo Anywhere w.r.t VFMs. We measure the impact of different monocular depth
estimation networks. Networks trained on SceneFlow [61].

Table 6 shows the results achieved by the different VFMs on the zero-shot generalization benchmark. Also in this case,
we can appreciate how any Stereo Anywhere variant yields comparable accuracy, with some VFMs like Moge yielding
some improvements over Depth Anything v2 on ETH3D, KITTI 2012 and 2015 at the expense of lowering the accuracy on
Middlebury 2014 and 2021. Interestingly, we can observe an important drop in accuracy by using DepthPro on Middlebury
2021, due to several failures by the model itself on the scenes of this dataset.

Middlebury 2014 (H) Middlebury 2021 ETH3D KITTI 2012 KITTI 2015

Model bad > 2 Avg. bad > 2 Avg. bad > 1 Avg. bad > 3 Avg. bad > 3 Avg.
All Noc Occ (px) All Noc Occ (px) All Noc Occ (px) All Noc Occ (px) All Noc Occ (px)

Baseline [55] 11.15 8.06 29.06 1.55 12.05 9.38 37.89 1.81 2.59 2.24 8.78 0.25 4.80 4.23 29.21 0.89 5.44 5.21 14.09 1.16
Stereo Anywhere – DAv2 [121] 6.96 4.75 20.34 0.94 7.97 5.71 29.52 1.08 1.66 1.43 5.29 0.24 3.90 3.52 21.65 0.83 3.93 3.79 11.01 0.97
Stereo Anywhere – DepthPro [6] 6.58 4.32 20.05 0.99 15.13 12.52 41.16 8.97 2.74 2.54 6.09 0.44 3.13 2.25 18.25 0.75 3.79 3.10 10.53 0.95
Stereo Anywhere – MoGe [109] 7.79 5.23 22.86 1.21 9.86 7.30 33.48 1.28 1.28 1.09 3.78 0.21 2.85 2.00 17.40 0.73 3.22 2.57 8.97 0.89
Stereo Anywhere – Lotus [33] 7.35 4.96 21.71 1.07 9.62 7.01 34.92 1.29 2.68 2.44 6.04 0.31 4.54 3.58 22.71 0.92 3.88 3.21 10.36 0.95

Table 6. Generalization of Stereo Anywhere w.r.t VFMs. We measure the impact of different monocular depth estimation networks.
Networks trained on SceneFlow [61].

Finally, Figure 7 shows qualitative results obtained by the different variants of Stereo Anywhere, highlighting only minor
differences among the different predictions.

RGB RAFT-Stereo [55]
Stereo Anywhere Stereo Anywhere Stereo Anywhere Stereo Anywhere

– DAv2 [121] – DepthPro [6] – MoGe [109] – Lotus [33]

Figure 7. Qualitative Results – Booster and LayeredFlow. Predictions by RAFT-Stereo and Stereo Anywhere – different VFMs.



8.2. Impact of Cost Volume Truncation
Cost volume truncation is a specific augmentation we apply to improve the results in the presence of mirrors. Figure 8 shows
a qualitative example of predictions by Stereo Anywhere (using Depth Anything v2) obtained by either not applying or by
applying such augmentation. While Stereo Anywhere alone cannot entirely restore the surface of the mirror starting from the
priors provided by the VFM, applying cost volume truncation allows for predicting a much smoother and consistent surface.

RGB
Stereo Anywhere Stereo Anywhere

w/o volume truncation w/ volume truncation

Figure 8. Qualitative Results – Volume Truncation. Predictions by Stereo Anywhere.

8.3. Runtime & Memory Consumption Analysis
Table 7 reports the processing time (in seconds) and memory consumption (in GB) required by Stereo Anywhere during
inference, comparing it with the baseline stereo backbone, RAFT-Stereo. We measure the runtime on a single A100 GPU,
repeating the experiment with three different input resolutions, specifically 256×256, 512×512, and 1024×1024, as well as
by deploying the different VFMs studied before to fuel Stereo Anywhere – specifically, for each variant we report standalone
runtime and memory usage by the VFM and the stereo backbone separately, as well as their sum.

Concerning runtime, Depth Anything v2 is the fastest among the VFMs, taking about 30ms to process a single image
at any resolution, with Moge requiring more than 10× the time for a single inference when processing 1Mpx images. The
stereo backbone requires about 50% additional time compared to the baseline, RAFT-Stereo [55], because of the additional
branch deployed to process the depth maps by the VFM.

For what concerns memory consumption, once again Depth Anything v2 is the most efficient among the VFMs, requiring
as few as 2GB, with Moge sharing similar requirements. Our stereo backbone introduces additional memory consumption
because of the second branch processing monocular cues: this overhead is negligible with 256 images, raising to about 2×
the memory required by RAFT-Stereo alone when dealing with 1Mpx images.

Image Size Stereo Model Name VFM Name Processing Time (s) Memory Consumption (GB)
(H ×W ) VFM Stereo Total VFM Stereo Total

256× 256 Stereo Anywhere (ours)

DAv2 [121] 0.03 0.15 0.18 0.57 0.18 0.76
DepthPro [6] 0.21 0.15 0.36 1.92 0.18 2.09
MoGe [109] 0.38 0.15 0.52 0.38 0.19 0.57
Lotus [33] 0.13 0.15 0.29 0.22 0.18 0.41

256× 256 RAFT-Stereo [55] - - 0.10 0.10 - 0.17 0.17

512× 512 Stereo Anywhere (ours)

DAv2 [121] 0.03 0.21 0.24 0.57 0.77 1.34
DepthPro [6] 0.20 0.21 0.41 1.84 0.77 2.60
MoGe [109] 0.38 0.21 0.59 0.38 0.78 1.17
Lotus [33] 0.16 0.22 0.38 0.85 0.77 1.62

512× 512 RAFT-Stereo [55] - - 0.14 0.14 - 0.66 0.66

1024× 1024 Stereo Anywhere (ours)

DAv2 [121] 0.03 0.61 0.63 0.58 5.73 6.31
DepthPro [6] 0.21 0.61 0.82 1.85 5.73 7.59
MoGe [109] 0.38 0.60 0.98 0.42 5.77 6.19
Lotus [33] 0.49 0.61 1.10 3.40 5.73 9.13

1024× 1024 RAFT-Stereo [55] - - 0.36 0.36 - 2.63 2.63

Table 7. Runtime & Memory Consumption Analysis.



9. Qualitative Results
We conclude with additional qualitative results by Stereo Anywhere on the different datasets involved in our experiments.

Figure 9 shows two examples from the KITTI 2012 dataset (respectively, stereo pairs 000040 and 000068). We can notice
how any existing stereo model is unable to properly perceive the presence of transparent surfaces, as in correspondence of the
windows on buildings and cars. On the contrary Stereo Anywhere, driven by the priors injected through the VFM, properly
predicts the disparity corresponding to the transparent surfaces.

RGB RAFT-Stereo [55]

DLNR [140] NMRF [28]

Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55]

DLNR [140] NMRF [28]

Selective-IGEV [110] Stereo Anywhere (ours)

Figure 9. Qualitative Results – KITTI 2012 (part 1). Predictions by state-of-the-art models and Stereo Anywhere.



Figure 10 shows two further examples from KITTI 2012 (respectively, stereo pairs 000073 and 000127). In this case,
we can appreciate the much higher level of detail in the disparity maps predicted by Stereo Anywhere, with extremely thin
structures in fences and gates being preserved.

RGB RAFT-Stereo [55]

DLNR [140] NMRF [28]

Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55]

DLNR [140] NMRF [28]

Selective-IGEV [110] Stereo Anywhere (ours)

Figure 10. Qualitative Results – KITTI 2012 (part 2). Predictions by state-of-the-art models and Stereo Anywhere.



Figure 11 reports two stereo pairs from KITTI 2015 (respectively, 000024 and 000049). These examples confirm the
ability to recover both thin structures and transparent surfaces already appreciated in KITTI 2012.

RGB RAFT-Stereo [55]

DLNR [140] NMRF [28]

Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55]

DLNR [140] NMRF [28]

Selective-IGEV [110] Stereo Anywhere (ours)

Figure 11. Qualitative Results – KITTI 2015 (part 1). Predictions by state-of-the-art models and Stereo Anywhere.



Figure 12 reports two additional samples from KITTI 2015 (respectively, 000093 and 000144). These latter present both
underexposed and transparent regions, respectively on the billboard and the tram in the two images. While existing stereo
networks struggle at dealing with both, Stereo Anywhere exposes unprecedented robustness.

RGB RAFT-Stereo [55]

DLNR [140] NMRF [28]

Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55]

DLNR [140] NMRF [28]

Selective-IGEV [110] Stereo Anywhere (ours)

Figure 12. Qualitative Results – KITTI 2015 (part 2). Predictions by state-of-the-art models and Stereo Anywhere.



Figure 13 reports two image pairs from Middlebury 2014 (respectively, Adirondack and Vintage). On the former, Stereo
Anywhere preserves the very thin holes on the back of the chair, while on the latter it can properly estimate the disparity for
the displays, where existing methods are fooled and predict holes.

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

Figure 13. Qualitative Results – Middlebury 2014. Predictions by state-of-the-art models and Stereo Anywhere.



Figure 14 and 15 shows the results on two samples from Middlebury 2021, peculiar for their aspect ratio (respectively,
ladder1 and ladder2). Although existing models perform quite well on both, they fail to preserve the skittles on the top of
the scene, whereas Stereo Anywhere properly predicts their structure.

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

Figure 14. Qualitative Results – Middlebury 2021 (part 1). Predictions by state-of-the-art models and Stereo Anywhere.



RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

Figure 15. Qualitative Results – Middlebury 2021 (part 2). Predictions by state-of-the-art models and Stereo Anywhere.



Figure 16 collects three outdoor images from ETH3D (respectively, Playground1, Playground2 and Playground3). Once
again, Stereo Anywhere proves its supremacy at predicting fine details such as branches and poles, while resulting more
robust to challenging illumination conditions such as the sun flare in Playground2.

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55] DLNR [140]

Figure 16. Qualitative Results – ETH3D. Predictions by state-of-the-art models and Stereo Anywhere.



Figure 17 and 18 report four examples from the Booster dataset, confirming how Stereo Anywhere can exploit the strong
priors provided by the VFM to properly perceive the glass surface on the window in the former image, as well as challenging,
untextured black surfaces of the computer, the TV and the displays appearing in the remaining samples.

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

Figure 17. Qualitative Results – Booster (part 1). Predictions by state-of-the-art models and Stereo Anywhere.



RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

Figure 18. Qualitative Results – Booster (part 2). Predictions by state-of-the-art models and Stereo Anywhere.



Figure 19 showcases three images from the LayeredFlow dataset, highlighting once again the inability of the state-of-the-
art networks to model even small, transparent surfaces as those in the doors from the first and second samples, conversely
to Stereo Anywhere which can properly identify their presence. Finally, the third sample further highlights the high level of
detail in Stereo Anywhere predictions once again.

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

RGB RAFT-Stereo [55] DLNR [140]

NMRF [28] Selective-IGEV [110] Stereo Anywhere (ours)

Figure 19. Qualitative Results – LayeredFlow. Predictions by state-of-the-art models and Stereo Anywhere.



To conclude, Figure 20 collects three scenes from our novel MonoTrap dataset. In this case, we report predictions by both
state-of-the-art monocular and stereo models, as well as by Stereo Anywhere. The perspective illusions fooling monocular
methods, unsurprisingly, do not affect stereo networks, which however are inaccurate near the left border of the image (first
sample) or in the absence of texture (second sample). Stereo Anywhere effectively combines the strength of both worlds,
while being not affected by any of their weaknesses.

RGB Depth Anything v2 [121] DepthPro [6]

RAFT-Stereo [55] Selective-IGEV [110] Stereo Anywhere (ours)

RGB Depth Anything v2 [121] DepthPro [6]

RAFT-Stereo [55] Selective-IGEV [110] Stereo Anywhere (ours)

RGB Depth Anything v2 [121] DepthPro [6]

RAFT-Stereo [55] Selective-IGEV [110] Stereo Anywhere (ours)

Figure 20. Qualitative Results – MonoTrap. Predictions by state-of-the-art models and Stereo Anywhere.
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