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1. Overview

The supplementary material of SemiDAViL provides a de-
tailed analysis of the superiority of our proposed vision-
language attention mechanism in section 2, studies the class
statistics and analyzes the influence of DyCE loss for tail
classes in section 3, detailed comparison with other class-
balancing losses in section 4, qualitative analysis of Semi-
DAVIL on segmentation tasks in section 5, and detailed
comparison with SemiVL [5] in section 6. Finally, we dis-
cuss some of the potential future directions in section 7.

2. Effectiveness of Dense Language Guidance

To evaluate the effectiveness of our proposed vision-
language attention mechanism using DLG, we perform a
comparative analysis of DLG with some of the existing at-
tention mechanisms. Figure 1 highlights the effectiveness
of our proposed Dense Language Guidance (DLG) mech-
anism compared to previous vision-language integration
approaches. DLG achieves state-of-the-art performance
across all label settings in both GTA5 — Cityscapes and
Synthia — Cityscapes benchmarks. For instance, in the
zero-label setting, DLG attains a mean Intersection-over-
Union (mloU) of 67.7% (GTAS) and 70.2% (Synthia), out-
performing the Word-Pixel Correlation Tensor (WPCT) [6]
by +2.6% and +4.4%, respectively, and Vision-Language
Guided Attention (VLGA) (which is used in SemiVL [5])
by +1.4% and +1.9%. As the number of labeled target sam-
ples increases, DLG maintains consistent improvements,
with mIoU gains of up to +3.6% over WPCT and +2.6%
over VLGA at 2975 labeled samples. These results under-
score DLG’s superior ability to fuse vision and language
features effectively across various levels of supervision.
DLG’s improved performance arises from its balanced
treatment of vision and language features in its attention
mechanism. Unlike prior methods that treat language fea-
tures merely as attention weights, DLG transforms both vi-
sual and textual features into key-value pairs and treats them
equivalently during cross-modal interaction. This enables
a richer fusion process where attended vision and language

features are integrated symmetrically, producing a true mul-
timodal representation that retains information from both
modalities. By normalizing and applying attention across
both vision and language axes, DLG ensures comprehen-
sive integration, avoiding the dominance of one modality
over the other. The result is a robust mechanism capable
of capturing nuanced cross-modal dependencies, which di-
rectly translates to improved generalization and segmenta-
tion performance, particularly in low-label scenarios where
prior approaches struggle. Thus DLG sets a new benchmark
for robust VL guidance in SSDA.

3. Class Imbalance Analysis

We further evaluate the extent of class imbalance in Synapse
and Cityscapes datasets in Figure 2 and Figure 3, respec-
tively along with the performance improvements brought
by the proposed dynamic CE (DyCE) loss. The plot-
ted results in Figure 2 demonstrate a strong inverse cor-
relation between class frequency and the efficacy of our
DyCE loss in improving segmentation performance under
SSL settings with 20% annotations. For rare classes (e.g.,
Ga, Es, LAG, and RAG), which exhibit frequencies below
1%, DyCE achieves substantial improvements, with URPC
[9] and UA-MT [11] backbones delivering gains exceeding
50% in some cases. Conversely, for more frequently oc-
curring classes like Li and St, DyCE exhibits modest gains,
highlighting its ability to address class imbalance by prior-
itizing underrepresented categories. This trend underscores
the robustness of DyCE in improving representation learn-
ing for minority classes, a critical challenge in medical im-
age segmentation tasks.

The Cityscapes results in Figure 3 highlight the sig-
nificant performance gains achieved for rare classes, such
as Train, Motorcycle, and Rider, which collectively rep-
resent less than 1% of the dataset.  Notably, these
classes exhibit improvements of up to 2.3% (Rider) in
the GTAS5—Cityscapes scenario and 2.05% (Rider) in the
Synthia—Cityscapes scenario. Similarly, other infrequent
classes, such as Bus, Truck, and Wall, also experience sub-
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Figure 1. Comparative analysis of multiple vision-language attention mechanisms: our Dense Language Guidance (DLG), VLGA [5],
WPCT [6], and Cross-attention [2] on (a) GTA5— Cityscapes and (b) Synthia— Cityscapes using different labeled target annotations.
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Figure 2. Class distribution of the Synapse medical dataset and percentage improvement achieved by our DyCE loss in (a) UA-MT [11]
and (b) URPC [9] networks using 20% labeled data in SSL setting.

stantial boosts, ranging from 1.8% to 2% across both do-
main adaptation settings. This improvement underscores
DyCE’s effectiveness in addressing domain shift challenges
for low-frequency classes, where traditional methods often
struggle. Conversely, the results for common classes like
Road and Building, which dominate the dataset’s frequency
distribution, show relatively limited improvements of 0.1%
to 0.4% for GTAS—Cityscapes and 0.07% to 0.09% for
Synthia—Cityscapes. Classes with moderate frequency,
such as Car, Sidewalk, and Vegetation, also show consistent
but smaller gains, further confirming DyCE’s capability to

prioritize and balance underrepresented classes while main-
taining stable performance for dominant categories. This
class-specific focus allows the model to achieve improved
overall segmentation quality without compromising accu-
racy in the more frequent classes.

Overall, DyCE demonstrates superior efficacy in ad-
dressing class imbalance by dynamically prioritizing un-
derrepresented tail classes, resulting in significant perfor-
mance gains for rare categories while maintaining stability
for dominant ones, establishing its critical role in advancing
segmentation tasks where tail-class accuracy is crucial.
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Figure 3. Class distribution of the Cityscapes dataset and percentage improvements achieved by our DyCE loss in (a) GTAS— Cityscapes
and (b) Synthia— Cityscapes scenarios under the SSDA setting with 500 target annotations.
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Figure 4. Qualitative comparison of SemiDAViL with previous state-of-the-art method, DusPerb [10], S-Depth [4] on 100-labeled target
data on GTA5— Cityscapes and Synthia— Cityscapes adaptation settings.

4. Comparison with Class-balancing Losses

In this section, we present a comparative analysis of our
proposed Dynamic Cross Entropy (DyCE) loss against sev-
eral state-of-the-art loss functions designed to address class
imbalance in semantic segmentation tasks. The meth-
ods under comparison include Cross Entropy (CE) [12] ,

Weighted Cross Entropy (WCE) [1], Focal Loss (FL) [8],
Dual Cross Entropy (DCE) [7], and Dual Focal Loss (DFL)
Hossain et al. [3].

Cross Entropy serves as a baseline, calculating the loga-
rithmic difference between predicted and actual class distri-
butions. Weighted Cross Entropy introduces class-specific



Table 1. Performance comparison of our DyCE loss with pre-
vious loss functions to address class imbalance. We report 19-
class and 16-class mloU scores for the GTA5— Cityscapes and
Synthia— Cityscapes settings, respectively across 0, 100, 200,
500, 100, and 2975 (100%) labeled target images. Our results are
highlighted whereas the previous-best and second-best results are
marked in red and blue.

GTAS5—Cityscapes

Labeled Target Samples
0 100 200 500 1000 2975

CE [12] 669 703 71.6 721 739 744
WCE [1] 643 694 705 718 727 733
DCE [7] 67.1 705 71.6 723 733 747
FL [8] 67.0 704 718 722 741 749
DFL [3] 673 70.6 719 722 740 748
DyCE (ours) 67.7 711 725 729 748 75.2

Synthia— Cityscapes

CE [12] 69.5 749 768 717 792 79.6
WCE [1] 672 73.1 744 753 71.6 789
DCE [7] 69.7 752 76.8 78.1 79.1 79.7
FL [8] 69.8 754 769 780 793 797
DFL|[3] 699 757 77.0 782 789 7938
DyCE (ours) 70.2 769 772 78.6 79.7 80.5

Loss

weights to emphasize underrepresented categories. Focal
Loss modulates the loss contribution of well-classified ex-
amples, allowing the model to focus on challenging in-
stances. Dual Cross Entropy incorporates a regularization
term to balance positive and negative predictions. Dual Fo-
cal Loss combines adaptive scaling with regularization to
achieve more balanced gradient propagation. Our proposed
DyCE loss builds upon these foundations, introducing a
dynamic, gradient-adaptive mechanism to optimize conver-
gence and segmentation performance across varying levels
of supervision.

Table 1 establishes the preeminence of DyCE in mitigat-
ing class imbalance across varying degrees of target anno-
tations. In the GTA—Cityscapes domain adaptation sce-
nario, DyCE achieves a 19-class mloU of 67.7% in the ab-
sence of labeled target samples, scaling up to 75.2% under
full supervision (2975 labels). For Synthia— Cityscapes,
DyCE exhibits analogous dominance, attaining a 16-class
mloU of 70.2% without annotations and 80.5% under com-
plete supervision. These findings underscore DyCE’s adapt-
ability and robustness across supervision levels. Unlike
WCE, which employs static weighting, and DCE, which
incorporates a regularization term, DyCE dynamically ac-
centuates harder-to-classify categories without succumbing
to gradient attenuation. This design enables it to surpass
state-of-the-art methods such as DFL and FL, particularly
under annotation-scarce regimes.

CE establishes a baseline yet falters in addressing class
imbalance due to uniform loss weighting. WCE refines

this by imposing fixed penalties on minority classes; how-
ever, static weights remain suboptimal in evolving sce-
narios. FL introduces dynamic scaling tailored to class
difficulty, excelling in emphasizing hard-to-classify exam-
ples, but its susceptibility to vanishing gradients impedes
training convergence. DCE mitigates this gradient vanish-
ing by regularizing negative class predictions, albeit at the
cost of disproportionately penalizing false negatives. DFL
synthesizes FL’s adaptive scaling with DCE’s regulariza-
tion, ensuring balanced gradient propagation. DyCE ad-
vances this paradigm through a gradient-adaptive mecha-
nism that dynamically modulates loss and penalizes mis-
classifications more rigorously, especially for underrepre-
sented classes. This innovative construct ensures optimal
convergence and superior segmentation performance, as ev-
idenced by DyCE’s consistent outperformance across all ex-
perimental scenarios in Table 1.

5. Qualitative Results

We provide a qualitative comparison of our proposed Semi-
DAVIL with the previous best methods, DusPerb [10], S-
Depth [4], and the available ground truth label in Figure 4.
Experiments are performed using 100-labeled target sam-
ples on GTAS— Cityscapes and Synthia— Cityscapes set-
tings. Upon closer examination, the proposed method con-
sistently produces segmentation masks that more closely
align with the ground truth than the other two methods. In
particular, our method demonstrates superior performance
in accurately delineating object boundaries and capturing
fine details for semantically confusing classes (e.g., side-
walk vs. wall, rider vs bike, traffic light vs. vegetation,
wall vs. sky, etc.), owing to the strong semantic prior from
vision-language initialization and dense language guidance
using multimodal attention. This suggests that the proposed
method has a better capacity for understanding and inter-
preting the relationship between linguistic descriptions and
visual features, resulting in more accurate and refined seg-
mentation outputs. Moreover, our approach shows a marked
improvement for tail classes (e.g., rider, motorcycle, wall,
etc.) in precisely segmenting intricate shapes and maintain-
ing object integrity. This improvement can be attributed to
our proposed class-balancing DyCE loss, which dynami-
cally prioritizes imbalanced and underperforming classes.
Previous SoTA methods like [4, 10] fall short in these two
major aspects, leading to suboptimal performance.

6. Comparison with SemiVL

Although they may appear similar at first glance, our work
is fundamentally different from SemiVL [5]. Whereas
SemiVL targets semi-supervised semantic segmentation
with a focus on label efficiency—employing a language-
guided decoder that leverages frozen CLIP predictions



and dataset-specific class definitions—our method, Semi-
DAVIL, pioneers semi-supervised domain adaptation. We
address the domain shift challenge by integrating a Dense
Language Guidance (DLG) module that fuses fine-grained
visual and textual embeddings for robust, pixel-level se-
mantic alignment across domains. Furthermore, our ap-
proach tackles class imbalance through a novel Dynamic
Cross-Entropy (DyCE) loss that reweights minority classes
during training. In addition, our pseudo-labeling strategy
synergistically combines consistency regularization with
dense language embeddings to refine predictions, while our
language guidance utilizes detailed captions for both con-
tent and spatial positioning rather than fixed class defini-
tions. Together, these innovations enable SemiDAViL to ef-
fectively bridge the semantic gap between source and target
domains, setting it apart as the first language-guided semi-
supervised DA method for semantic segmentation.

To further validate the differences quantitatively, we
perform experiments under both semi-supervised domain
adaptation (SSDA) and semi-supervised learning (SSL) set-
tings using varying numbers of labeled target samples. Un-
der the SSDA scenario—specifically adapting from GTA
or synthetic data to Cityscapes—our method consistently
achieves higher mloU scores across all target sample sizes.
For example, when adapting from Syn. to Cityscapes, our
method attains 76.9, 77.2, 78.6, and 79.7 mloU with 100,
200, 500, and 1000 labeled samples respectively, outper-
forming SemiVL by up to 5.5 mloU. This performance gain
is primarily attributed to our integration of domain adap-
tation components, such as the Dense Language Guidance
(DLG) module, which fuses visual and textual features to
better align semantic representations across domains, and
the novel Dynamic Cross-Entropy (DyCE) loss that rebal-
ances class distributions to mitigate source bias. In contrast,
SemiVL, which lacks explicit domain adaptation mecha-
nisms, tends to overfit to the abundant source labels, result-
ing in a suboptimal adaptation to the target domain. More-
over, even under the SSL setting (Cityscapes— Cityscapes),
where domain shift is not a factor, our method still outper-
forms SemiVL (81.6 vs. 80.4 mIoU at 1000 labeled sam-
ples), indicating that our approach enhances feature local-
ization and pseudo-label refinement through a more robust
consistency training framework. These detailed experimen-
tal results confirm that our method addresses domain shift
more effectively and improves the overall semantic segmen-
tation performance under limited annotation.

7. Future Works

While SemiDAVIL demonstrates strong performance in
mitigating class imbalance and enhancing segmentation
accuracy, there remain areas that offer opportunities for
further refinement. The reliance on pre-trained vision-
language models like CLIP may pose challenges in adapting

Table 2. Quantitative comparison with SemiVL [5] on SSDA and
SSL settings.

Type Methog L2Peled Target Sample
100 200 500 1000
SSDA  SemiVL[5] 685 69.9 706 717

(GTA—City.) Ours 71.1 725 729 748
SSDA SemiVL [5] 714 723 743 751
(Syn.—City.) Ours 769 772 78.6 79.7

SSL SemiVL [5] 762 779 802 804
(City.—City.) Ours 771 782 814 81.6

to domains where such resources are limited or less aligned
with the data. The dense multimodal attention and dynamic
loss modulation, while effective, could benefit from opti-
mizations to ensure scalability across larger datasets and
real-time applications. The use of off-the-shelf caption-
ing models in Dense Language Guidance (DLG) highlights
the importance of high-quality linguistic features, which
could be further enhanced for greater robustness. Ad-
dressing these aspects could unlock even broader applica-
tions and performance improvements for this promising ap-
proach.
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