
A. Additional Results
A.1. Additional Ablations

We show quantitative results for requested additional ablations in Tab. A. Specifically, we investigate optimizing a variant of
our training objective where the main change is omitting the attribute scale λi variation. This performs substantially worse
than the full version of our objective. We also evaluate directly taking the CLIP embedding of the target attribute – either its
general embedding as represented by the EOS token, or the relevant subject token. Both versions are similarly disentangled as
our CLIP difference method, but substantially underperform compared to it in subject-specificity.

(a) Subject-Specificity (b) Disentangledness (c) (d) Performance

Method Subject-Specificity ↑ ∆Id ↓ LPIPS ↓ Continuous Time ↓
Ours 3.35 0.40 0.10 ✓ 12.0s [4.17it/s]
Ours (w/o Delay) 3.47 0.50 0.22 ✓ 12.0s [4.17it/s]
Ours but optimize ∥ϵ̃+ − ϵ̂θ(xt | e+∆e)∥ (no λi) 2.23 0.55 0.31 ✓ 12.0s [4.17it/s]
Our CLIP Difference Method (Sec. 3.2) 2.38 1.20 0.58 ✓ 12.0s [4.17it/s]
CLIP Delta without Difference: ∆eAi

= (ECLIP(P+))[EOS] 1.98 1.16 0.58 ✓ 12.0s [4.17it/s]
CLIP Delta without Difference: ∆eAi = (ECLIP(P+))[Sj ] 1.83 1.20 0.60 ✓ 12.0s [4.17it/s]
Directly modulating ∆ϵ̃ (Sec. 3.3) with CFG 3.15 0.73 0.39 ✓ 23.0s [2.17it/s]

Table A. Extended version of Tab. 1 with additional ablations/baseline versions of our method.

We also compare with alternative approximations for the noise-space direction ∆ϵ̃ we are learning in the tokenwise text
embedding space as ∆eAi . Generally, other approaches to approximate these attribute- and sample-specific directions will not
exhibit subject-specificity, so we perform this investigation in the single-subject case. We compare with two baselines that
attempt to directly approximate ∆ϵ̃: averaging it over the diffusion timestep t on a per-sample basis and averaging it over
samples on a per-timestep basis. We compare them with the actual ∆ϵ̃ in Fig. A. We find that both of these approximations,
despite still having a dependency on either t or xT , only achieve a low similarity to the actual direction they attempt to
approximate, while our directions ∆eAi

consistently outperform both approximations over all t.

0 200 400 600 800 1000
t

0.0

0.2

0.4

0.6

0.8

1.0

co
s(

,
)

Our Tokenwise Text Embedding Space Directions
Noise-Space Directions
(averaged over t for a single sample)
Noise-Space Directions
(averaged over single sample)

Figure A. Cosine Similarities of approximations of ∆ϵ̃ compared to the actual true one over the diffusion timestep t.

A.2. Challenging Attributes

Some attributes are known in the community to be specifically challenging to get to work in practical settings. We show
some successful examples of applying Attribute Control to them in Fig. B. Color attributes (Fig. Ba) are known to be prone
to leakage across different objects, even in the base model. Our method generally inherits these limitations from the base
model and can not address cases where the original prompt already leads to attribute leakage. When adding new attributes
to the generated image, such as specifying the color for one object, we empirically find our modulations to lead to less (but
still not zero) leakage. Intuitively, this makes sense, as we do not add an additional token describing the color change, which
could be leaked to later tokens by the CLIP model and which any head of the diffusion model could attend to. Instead, we
exclusively add the information to the token that describes that object. However, as diffusion cross-attention maps are not fully
leakage-free unless applying methods that deliberately enforce this [7, 45, 58], we still observe color leakage with attribute
control, although to a lesser extent. This especially occurs when leakage is already present in the base generation or when
too much control is exerted (as shown in Fig. Ba). Similarly, cases where the base model is prone to leakage (e.g., trying to
affect dogs and cats separately) are less prone to attribute leakage when adding them via our method (see, e.g., Fig. Bc). For
attributes where the base model already struggles to apply them at all, our method inherits these limitations. Such attributes



like spatial relations can work (see Fig. Bb), but only do so (very) rarely, reflecting the base model’s inability to parse them
from normal prompts reliably.

(a) chair: red (too far→ leak) (b) man: on the right (c) dog: happy

Figure B. Vanilla Attribute Control in challenging settings.

Postfix Attribute Learning Some attributes are not easily expressible as prefixes to the noun. This means that, due to the
causal nature of the CLIP text encoder, our optimization-free method for identifying attribute directions (see Sec. 3.2) can
not be applied. However, we find that this limitation does not apply to our optimization-based approach (see Sec. 3.3): we
can learn directions based on attributes expressed as postfixes (e.g., “a person wearing sunglasses”, for which we show a
qualitative example in Fig. C).

+ “... wearing sunglasses”

Figure C. Our learning-based method can also learn to represent attributes represented as postfixes to the target subject noun during training.

A.3. Subject Noun Transferability

We investigate how much our learned attribute modulations can generalize across different nouns that describe the same
subject. We generally learn them on a set of different nouns that describe a subject of a specific category (e.g., for people with
the words “man”, “woman”, and “person”). However, these words typically do not cover the whole range of possible nouns
that can be used to describe subjects of a general category. Ideally, one could learn one modulation for one concept, such as
age, on a small set of nouns and generalize across all nouns of a category or even to subjects of other categories.

First, we test the generalization of modulations learned for people on “man”, “woman”, and “person” and apply them
to increasingly more specific nouns that describe people. Results are shown in Figs. D and E, and all prompts are “a photo
of a beautiful <noun>”. As a baseline, we apply them to “child”, “mother”, and “father”, three words that are previously
unseen but still describe very high-level sub-categories of people. We find that the learned modulations still work as expected.
Similarly, for categories of jobs such as “doctor”, “barista”, or “firefighter”, which are substantially more specific and also
substantially affect their clothing and the rest of the image, we find that they also work well. Finally, applying these learned
modulations to very specific nouns such as the names “John” and “Jane” also works as expected. This demonstrates that our
learned modulations can generalize well across a wide range of unseen nouns describing instances of a specific category, even
if they were only learned on a small set of high-level, potential nouns.
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Figure D. Subject Noun Transferability. We stress-test applying modulations that have been learned only on the nouns “man“, “woman“,
and “person“ to various other nouns that describe people. The unmodified image is marked in green. All samples are generated using
attribute modulations being applied with a linear scale from -2 to 2 across each.
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Figure E. Subject Noun Transferability. We stress-test applying modulations that have been learned only on the nouns “man“, “woman“,
and “person“ to various other nouns that describe people. The unmodified image is marked in green. All samples are generated using
attribute modulations being applied with a linear scale from -2 to 2 across each.

A.4. Multi-Subject Attribute Editing

Figs. F and G show examples of modulating attributes in a subject-specific manner using our learned modulations. These show
that various attributes can be applied to subjects individually, even if both subjects are of the same category (e.g., “people”). A
slight correlation between, e.g., the age of the man and the age of the woman in Fig. F is visible and expected, as the diffusion
model also models these dependencies between different subjects in the generated image. By applying both modulations with
different strengths, the whole spectrum of combinations can be achieved, as shown in Fig. 9.
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Figure F. Multi-Subject Attribute Modifications. The unmodified image is marked in green. All samples are generated using one attribute
modulation each being applied to the two subjects mentioned in the prompt with a linear scale from -2 to 2 across each.
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Figure G. Multi-Subject Attribute Modifications. The unmodified image is marked in green. All samples are generated using one attribute
modulation each being applied to the two subjects mentioned in the prompt with a linear scale from -2 to 2 across each.



A.5. Compositional Attribute Editing

We show some 2d grids where two attributes are modulated for the same target subject in an additive manner in Figs. H and I.
Both attribute modulations interact with each other according to the world knowledge of the diffusion model to produce a
realistic image for every combination.
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Figure H. Compositional Attribute Modifications. The unmodified image is marked in green. All samples are generated using two
attribute modulations being applied additively with a linear scale from -2 to 2 across each.
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Figure I. Compositional Attribute Modifications. The unmodified image is marked in green. All samples are generated using two attribute
modulations being applied additively with a linear scale from -2 to 2 across each.



A.6. Continuous Attribute Modulation

To illustrate the breadth of attributes that can be modulated and how continuous the attribute changes are, we show a range
of attributes being continuously modulated. Figs. J to M show examples where attribute modulations are applied with our
delayed sampling, Fig. N shows attribute modulations applied for the full sampling time. For every category, we re-use the
same sample instances as a starting point.

{Bike, Car} Age
+−

{Bed, Chair} Age
+−

Figure J. Continuous Attribute Modifications. Unmodified images are marked in green. All samples are generated using a linear scale
from -2 to 2.
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Figure K. Continuous Attribute Modifications. Unmodified images are marked in green. All samples are generated using a linear scale
from -2 to 2.
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Figure L. Continuous Attribute Modifications. Unmodified images are marked in green. All samples are generated using a linear scale
from -2 to 2.
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Figure M. Continuous Attribute Modifications. Unmodified images are marked in green. All samples are generated using a linear scale
from -2 to 2.
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Figure N. Continuous Attribute Modifications. Unmodified images are marked in green. All samples are generated using a linear scale
from -2 to 2, with the modulations being applied for all steps (w/o Delay).



B. Implementation Details
This section gives details about the implementation of our method. We generally use the default settings as set in diffusers2-
v0.25.0 with a classifier-free guidance [18] scale of 7.5 and 50-step DDIM [50] sampling unless specified otherwise.

B.1. Semantic Direction Training

Algorithm 1 Algorithm for Learning the Semantic Directions

1: Input:
Pre-trained diffusion model ϵ̂θ
CLIP embedding dimension dCLIP

Learning rate η, number of steps S, batch size B
2: Output:

Learned semantic direction ∆eAi

3: Initialize ∆eAi
= 0 ▷ Initialization

4: for s = 1 to S do ▷ Training loop
5: Lbatch ← 0 ▷ Initialize batch loss
6: for each entry in batch of size B do
7: Sample random subject Sj and neutral prompt P
8: Generate image x0 from neutral prompt P
9: t ∼ U [0, T ] ▷ Sample random timestep

10: xt = αtx0 + σtϵ, ϵ ∼ N (0, I) ▷ Add noise
11: ϵ̃ = ϵ̂θ(xt|P ) ▷ Predict noise for P
12: ϵ̃+ = ϵ̂θ(xt|P+) ▷ Predict noise for P+

13: ∆ϵ̃ = ϵ̃+ − ϵ̃ ▷ Compute noise direction
14: λi ∼ U([−5, 5] \ (−0.1, 0.1)) ▷ Sample scale factor
15: Li = w(t) ∥(ϵ+ λi∆ϵ̃)− ϵ̂θ(xt|e′(e, λi∆eAi), t)∥

2
2 ▷ Compute loss for this entry

16: Lbatch ← Lbatch + Li ▷ Accumulate batch loss
17: end for
18: Compute mean loss for the batch: Lmean ← 1

BLbatch
19: Update ∆eAi

using AdamW optimizer with learning rate η based on Lmean
20: end for
21: Return: ∆eAi

The semantic directions ∆eAi for target attribute Ai are implemented as learnable parameters of shape 1× dCLIP, with
dCLIP being the embedding dimension of the CLIP text encoder. For SDXL [40], this is 2048, resulting from the channelwise
concatenation of embeddings from the OpenAI CLIP ViT-L [42] and OpenCLIP ViT-bigG [23]. This direction is applied
additively with scaling according to Eq. (3) to the target subject tokens (e.g., “person” in the case of “a photo of a person”)
in the original text embedding e. If the target subject consists of multiple tokens, we broadcast ∆eAi

across those tokens,
although this is only very rarely the case in practice. Similarly, if one subject is mentioned in the prompt multiple times, we
apply the same modulation to all instances.

We train our semantic directions ∆eAi for 1000 steps3 at a batch size of 10. We use AdamW [31] with a learning rate of
0.1, (β1, β2) = (0.5, 0.8), and weight decay of 0.333. All directions are trained on a single A100 with 40GB of VRAM using
a bfloat16 version of SDXL [40].

For every entry in the batch, we use a random combination of prefix prompt (e.g. “an photo of”, optionally with attributes
such as ethnicity (e.g., {asian, african-american, caucasian, arab, african, south-american, indian, ...}), to focus the implied
direction on one that is invariant to these attributes) and prompt tuple (e.g “a woman”) and sample an image with the neutral
prompt (e.g. “a photo of a woman”) and a random seed, stopping at a random timestep. We then compute the prediction
starting from that step for all two/three prompts, resulting in ϵ̃, ϵ̃+, and optionally ϵ̃−. In contrast to [14], we explicitly
distill the full direction implied by ∆ϵ̃ by using multiple scales λi sampled from a continuous scale distribution. Preliminary

2https://github.com/huggingface/diffusers
3The directions tend to be mostly converged after 10 steps, but we train for a unified training time across all attributes for consistency.

https://github.com/huggingface/diffusers


experiments showed that this helps obtain substantially more robust directions. Additionally, we sample our starting samples
using standard sampling instead of a modified generation process.

We then sample four values for λi ∼ U([−5, 5] \ (−0.1, 0.1)) and compute our training loss (Eq. (4)) over them. We found
that sampling multiple values for λi substantially boosts the quality of our learned directions at little overhead cost (as the
online sampling of the original images is the most costly part) and that values for λi very close to zero were not particularly
useful for the training process. Empirically, we find that most of our learned directions are already close to convergence after
five optimization steps, but we keep training for the full time for simplicity.

B.2. Combination of Attribute Control with other Methods

In Sec. 4, we combine our attribute control method with other off-the-shelf controlled generation methods.

Combination with Prompt-to-Prompt [17] To combine our method with Prompt-to-Prompt, we apply the standard Prompt-
to-Prompt method. We use the same adaptation mode and hyperparameters as used for adding adjectives in the text prompt,
but add our modulations on the text prompt embedding instead. To modulate the change, we scale our directions as usual.

Combination with AdapEdit [32] AdapEdit uses the same general external interface as Prompt-to-Prompt. Here, we apply
our modulations in the exact same way as previously described for Prompt-to-Prompt. As AdapEdit is not available for
SDXL [40], we use zero-shot adaptation of our semantic directions obtained on SDXL to SD1.5, as described in Sec. 4.2.

Combination with ReNoise [15] To apply our controlled generation approach to editing, we combine it with ReNoise,
a standard inversion approach. We use their official reference implementation based on SDXL Turbo [47] and apply
our modulations learned on SDXL there. We perform inversion purely with ReNoise with default settings and an image
description prompt to obtain a starting latent xT , and then perform controlled generation purely with our method with standard
settings. This could optionally be combined further with other methods during inference, such as Prompt-to-Prompt [17] and
AdapEdit [32].

B.3. Experiment Evaluation Details

To compute perceptual image differences, we use LPIPS [60] as implemented in the lpips4 package with default settings at
a resolution of 2562 (interpolated bi-linearly). For CLIP scores, we use the standard implementation in torchmetrics5

(which outputs cosine similarities scaled to [0, 100]) with default settings, including the default CLIP choice of the CLIP-
ViT-L/14 trained by OpenAI [42]. For image-image similarity evaluations with DINOv2 [37], we use the ViT-L/14 variant
with registers [10] and bi-linearly resize to 2242 before passing them to the model and comparing the cosine similarity of the
CLS token outputs. Finally, for ReID evaluations, we use the ArcFace [11] implementation provided by the insightface6

python package with the default buffalo l model, where we compute the cosine similarity of the embeddings of the
detected faces.

Implementations of other Methods For Concept Sliders [14], we use the official public implementation7. For Prompt-
to-Prompt [17], we use RoyiRa’s unofficial port of the method to Stable Diffusion XL8. This implementation also served as
the basis for integrating our method with Prompt-to-Prompt in our codebase. As this implementation is partially incomplete,
we referred to the official implementation Prompt-to-Prompt9 for the implementation of reweighting of added words. For
AdapEdit10, MasaCtrl11, and ReNoise12, we also used the respective official implementations. When comparing attribute
modulation capabilities across different methods, we compare using the target attribute age on people, as this attribute is i)
unambiguous in what exactly it describes, ii) fully continuous, and iii) the attribute supported by Concept Sliders13 that can be
evaluated most objectively while being one that SD(XL) can readily interpret when given as text (unlike, e.g., eye size).

4https://github.com/richzhang/PerceptualSimilarity
5https://github.com/Lightning-AI/torchmetrics
6https://github.com/deepinsight/insightface
7https://github.com/rohitgandikota/sliders
8https://github.com/RoyiRa/prompt-to-prompt-with-sdxl
9https://github.com/google/prompt-to-prompt

10https://github.com/AnonymousPony/adap-edit
11https://github.com/TencentARC/MasaCtrl
12https://github.com/garibida/ReNoise-Inversion
13https://sliders.baulab.info/weights/xl_sliders/
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https://github.com/TencentARC/MasaCtrl
https://github.com/garibida/ReNoise-Inversion
https://sliders.baulab.info/weights/xl_sliders/


Attribute Distribution Shifts (Figure 6) For each value of λi ∈ {0, 1, 2, 3}, 20 samples (with fixed seeds across scales)
were drawn. We compute the delta CLIP score as specified in the experiments section of the paper and use scipy’s Gaussian
KDE method14 to compute the kernel density estimate for the resulting distributions with Scott’s rule and default settings.

Qualitative Continuous Modulation (Figure 7) We continuously modulate the age of the person described in the prompt
with both our method and Concept Sliders [14], choosing coefficients such that a wide range is covered and both methods
show similar scales per column. For Prompt-to-Prompt [17] and MasaCtrl [6], we add “old” or “young” to the prompt to
coarsely modulate the target attribute. Prompt-to-Prompt further enables some fine-grained control around the already offset
attribute expression point from the added adjective by re-weighting the added adjective. This does, at least for Stable Diffusion
XL [40], not allow continuous modulation back to the original image, causing a discontinuity. This can intuitively be explained
by the fact that attributes are aggregated in the subject noun, a fact that our method exploits to directly enable fine-grained,
subject-specific target attribute modulation: as the attribute modulation for P2P is already partially contained in the subject
noun, modulating just the added adjective’s cross-attention map can not fully recover the original generated image. At the
same time, when combined with our method, where we just modulate the target subject noun’s embedding instead of adding
new adjectives, this problem immediately subsides.

Quantitative Subject Specificity Evaluation (Table 1a) With each method, we generate variations across a set of 50 images
with individual prompts describing two people, where we modulate the target attribute of one of the two subjects. We detect
each subject in the unmodified image as previously described with the standard pipeline from insightface, and then
compute the target metric for each bounding box. We aggregate the specificity metric as described in Eq. (6) by computing
the fraction individually per sample and then aggregating the overall mean. As there are some cases where this effectively
results in a division by zero, we clamp the resulting individual values to [0, 10]. We chose 10 as a threshold, as it prevents
these outlier samples from having an extraordinarily strong effect on the overall mean.

Attribute Coverage Evaluation (Figure 9) To evaluate the set of attribute combinations reachable by each method, we
start from the same setup as previously described for Table 1a, but continuously modulate the age for both subjects visible in
the image, covering all combinations of modulation scales for each method. We evaluate 20 values per subject, producing
400 generated samples per method for methods that allow independent continuous modulation of both subjects. We then
measure the attribute expression for each subject bounding box (obtained as previously in Table 1a) using Eq. (8) and plot the
distribution for one representative sample in Fig. 9.

Quantitative Disentangledness Evaluation (Figure 10, Table 1b) We generate 50 base samples showing people with
different prompts of the format “a close-up portrait of a {modifiers} {woman, man}”, where {modifiers} describes a set
of prefixes (e.g., “{∅, beautiful, elegant} asian”, “{∅, beautiful, elegant} african-american”, etc) to cover a wide variety
of different images. Then, we modulate the target attribute continuously using each method. We then measure the attribute
expression change with Eq. (8), the image change with LPIPS, and the identity change as in Eq. (7). We aggregate these values
over all 50 images per combination of method & hyperparameters and then plot them in Fig. 10. For Table 1b, we compute
the slope of these graphs (using the absolute value of ∆CLIPBi for the denominator, to account for the fact that the changes
increase for positive values and one for negative values of ∆CLIPBi) to quantify the disentangledness of the edits both from
overall visual changes (LPIPS) and person identity changes (∆Id).

Inference Performance Evaluation (Table 1d) For each method, we use the released implementations of each respective
method with default settings and replicate the original environments as closely as possible, given the information documented
by the authors. We measure inference times on the same Nvidia A100 SXM with 80GB of VRAM and document both the
total time and (average) step time, as some methods use different step counts for sampling. For the main paper, we consolidate
inversion and generation time if applicable. We exclude the time spent obtaining attribute deltas, as it is done once ahead of
time and causes no overhead during inference/amortizes quickly when needing to train deltas for new attributes, similar to
Concept Sliders [14], where we also exclude slider training time due to the same reason.

14https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
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C. Visualization Details & Prompts
Generally, all examples in the paper use Stable Diffusion XL as introduced by Podell et al. [40] unless noted otherwise. In the
following, we provide the prompts and, in the case of editing examples, image sources incl. licenses, used to generate the
various qualitative examples presented in the paper.

Figure 1 Prompt: “A close-up photo of a man and a woman sitting on a bench.”

Figure 2 Prompts: “a portrait of a beautiful car”, “a portrait of a beautiful frog”, and “a portrait of a beautiful suv”.

Figure 3 Prompt: “a portrait of a beautiful woman with her beautiful dog”.

Figure 4 Prompt: “a photo of a car”.

Figure 6 Prompt: “a photo of a car”.

Figure 7 Base prompt: “a close-up portrait of a indian woman”.

Figure 8 Image 1 is a photo with the title “a red rolls royce parked in front of a building” by Rico Reynaldi, obtained from
Unsplash15. The image is licensed under the Unsplash license16 and has been center-cropped for inversion.
Inversion Prompt: “a photo of a beautiful red car on the top deck of a parking garage with large buildings in the background,
hazy weather with sunshine”.
Image 2 is a photo by The Royal Society, obtained from Wikimedia17. The image is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported license18 and has been cropped to primarily show the person’s head.
Inversion Prompt: “a photo of a man wearing glasses and a suit”.

Figure 11 Prompt: “a photo of a beautiful asian man”.

Figure 12 Prompt: “a portrait of an indian woman standing next to an african-american man”.

Figure 13 Prompt 1: “a portrait of a beautiful chair”.
Prompt 2: “ photo of an old car”.
Prompt 3: “a portrait of a beautiful truck”.
Prompt 4: “a photo of a beautiful man”.

Figure 14 aMUSEd: “a photo of a beautiful man”.
SD 1.5: “a headshot of a relaxed woman and a friendly man”.

Figure 15a Prompt: “a photo of a beautiful man”

Figure 15b Prompt: “a photo of a beautiful woman”

Figure 15c Prompt: “a close-up photo of a real beautiful man with his beautiful cat sitting in the forest, high detail, wide
angle lens.”

Figure Ba Prompt: “A close-up photo of a man sitting in a chair. He is leaning back and reading a book. A sofa is seen in
the background. modern aesthetic, architectural digest.”

15https://unsplash.com/photos/a-red-rolls-royce-parked-in-front-of-a-building-sAN11DGnjqk
16https://unsplash.com/license
17https://commons.wikimedia.org/wiki/File:Demis_Hassabis_Royal_Society.jpg
18https://creativecommons.org/licenses/by-sa/3.0/deed.en

https://unsplash.com/photos/a-red-rolls-royce-parked-in-front-of-a-building-sAN11DGnjqk
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Figure Bb Prompt: “A close-up photo of a man and a woman sitting on a bench. The setting is in the forest, high detail,
wide angle lens”

Figure Bc Prompt: “A close-up photo of a dog sitting next to a cat. The setting is in the forest, high detail, wide angle lens”

Figure C Prompt: “A photo of a beautiful asian man”

Figures D and E Prompt Template: “a photo of a beautiful [...]”

Figure F Prompt 1: “a photo of a bearded man in a beanie enjoying a concert with a bohemian woman in flowing attire”
Prompt 2: “a portrait of an indian woman standing next to an african-american man”

Figure G Prompt 1: “a photo of a tech-savvy man with a laptop engaged in conversation with a creative woman with
colorful tattoos”
Prompt 2: “a portrait of an indian woman dressed in traditional clothing next to an african-american man wearing a hat
standing in a library”

Figure H Prompt 1: “a photo of a car”
Prompt 2: “a photo of a compact red car”

Figure I Prompt 1 & 2: “a photo of a beautiful asian man”

Figure J Prompt 1 & 2: “a photo of a bike”
Prompt 3 & 4: “a photo of a car”
Prompt 5 & 6: “a photo of a bed”
Prompt 7 & 8: “a photo of a chair”

Figures K to N Prompt 1 & 3: “a photo of a beautiful man”
Prompt 2 & 4: “a photo of a beautiful woman”
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