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Supplementary Material

7. Ablation of Scene-Adaptive Loss

Below, we provide several ablations of the scene-adaptive
loss proposed to balance signal dynamically from diffuse
LiDAR and RGB sensors.

7.1. Adaptive Loss Ablation: Fixed Diffuse LiDAR
Weight

We present ablation results for our technique using diffuse
LiDAR and RGB with a fixed, global diffuse LiDAR loss
weight. This approach mirrors the loss formulation com-
monly used in conventional LiDAR, where point-based su-
pervision is implemented through an L; loss for depth:
Lgepn = | D — Dy||y where D is the predicted depth map,
and Dy is the ground truth depth. In these settings, a fixed
loss weighting is typically applied to the depth loss through-
out supervision; we present results in our setting akin to this
fixed-weight training. Results are shown in Tab. 3.

Our findings consistently demonstrate improved perfor-
mance with our scene-adaptive, patch-based loss formula-
tion. Specifically, we observe notable gains in RGB and
depth estimation, particularly in high-texture regions where
the RGB signal is prioritized by our adaptive technique.
While the fixed loss weighting performs comparably in tex-
tureless scenes, the consistent improvements across diverse
textures highlight the advantages of a modified loss formu-
lation that effectively balances RGB and diffuse LiDAR sig-
nals based on scene content.

Table 3. Ablation: Using Fixed Loss Weight. Results for 10
training and 10 testing images are shown, comparing performance
with a fixed, global diffuse LiDAR loss weight. The findings
demonstrate that while fixed weighting performs well in texture-
less regions, our scene-adaptive, patch-based loss achieves consis-
tently better results in both RGB rendering and depth estimation
across a variety of high and mixed-texture scenes.

Method Blender Chair Hotdog Lego
ietho PSNRT DMAE| | PSNRT DMAE| | PSNRT DMAE| | PSNRT DMAE |

(a) Full Texture Datasets: Scenes with full texture on object and ground plane.

Ablation - Fixed Transient Loss Weight | 20.54 0,050 18.06 0.072 21.08 0.033 2053 0.046
Ours 30.67 0.025 30.25 0017 30.14 0016 28.39 0.025
(b) Textured Object Datasets: Scenes with textured objects on completely textureless ground planes.
Ablation - Fixed Transient Loss Weight | 1838 0.048 2267 0.048 18.55 0.040 17.27 0.043
urs 25.08 0.033 3218 0.030 35.62 0.024 30.00 0.024
(¢) Textured Plane Datasets: Scenes with completely textureless objects on textured ground planes.
Ablation - Fixed Transient Loss Weight 19.69 0.053 2048 0.045 20.50 0.036 20.20 0.046
Ours 23.72 0.045 25.70 0.037 28.97 0.034 26.60 0.046
mpletely textureless scenes.
0.046 0.049 0.039 - 0.046
0.045 — 0.045 0.041 — 0.042

7.2. Patch-based Loss Ablation: Adaptive Global
Loss

We present ablation results for our technique using diffuse
LiDAR and RGB with a global adaptive loss rather than a
patch-based loss. Our intuition is that scene-adaptive tech-
niques should be applied not only to entire images but also
to patches within images. This is because regions of high
texture may benefit more from RGB signals, while low-
texture regions might rely more heavily on diffuse LiDAR.
The results are summarized in Tab. 4.

The findings indicate that using a globally applied scene-
adaptive loss improves both color and geometry estima-
tion compared to a fixed loss (Tab. 3). However, our
patch-based approach consistently achieves better RGB and
depth/geometry estimation. Qualitatively, we observe that
global weighting can lead to “smoothing” in both geometry
and RGB, where fine geometric details, and hence precise
colors, are less effectively resolved. In such regions, sig-
nificantly higher RGB loss weighting is preferred. Notably,
in textureless scenes (Tab. 4d), the differences between our
patch-based approach and the global method are smaller.

Table 4. Ablation: Using Per-Image Adaptive Weights. Results
are presented for 10 training and 10 testing images, comparing an
adaptive loss weight without patch-based loss. Loss weighting is
computed similarly to our method, using scene variance and SNR,
but applied globally rather than patch-wise. The results show that
while global weighting improves robustness to texture variations,
a gap remains compared to patch-wise weighting. Our method
enables improved color estimation and consistently better depth
and geometry results.

Blender Chair Hotdog Lego
PSNRT DMAE] | PSNRT__DMAE| | PSNRT DMAE| | PSNRT DMAE]

enes with full texture on object and ground plane.

Method

(a) Full Texture Datasets:

Ablation - Smart Image- 25.44 0.036 26.34 0.025 2831 0023 27.00 0.028
Ours 3067 0.025 3025 0017 30.14 0016 2839 0025
(b) Textured Object Datasets: Scenes with textured objects on completely textureless ground planes.

Ablation - Smart Image-wide Weighting 17.23 0.051 28.09 0.035 3235 0.027 26.14 0.027
Ours 25.08 0.033 32.18 0.030 35.62 0.024 30.00 0.024
(¢) Textured Plane Datasets: Scenes with completely textureless objects on textured ground planes.

Ablation - Smart Image-wide Weighting 0052 2341 0.039 27.61 0033 24.74 0,044
Ours 0.045 25.70 0037 2897 0034 26.60 0.046
(d) Full Textureless Datasets: Completely textureless scenes.

Ablation - Smart Image-wide Weighting - 0049 - 0051 - 0043 - 0052
Ours 0045 - 0045 - 0.041 - 0042

7.3. Scene-Adaptive Loss Ablation on 45 Images

We present results for our scene-adaptive loss approach us-
ing 45 training images and 15 test images (compared to the
10 training and 10 test images shown in the main paper).
This aims to demonstrate that our results remain consistent
even when the dataset size increases. The results for this
ablation are shown in Tab. 5.



We compare our technique to a patch-based ablation us-
ing global variance and SNR to compute a global diffuse
LiDAR weight (the same approach used in Tab. 4, provid-
ing the strongest possible ablation comparison). Our find-
ings confirm that the improvements achieved by our method
are consistent across a larger dataset. Notably, we observe
effects similar to those seen in smaller datasets: reliance on
diffuse LiDAR weighting in high-texture regions can lead
to undesirable smoothing, particularly when RGB cues al-
ready provide sufficient texture. This smoothing effect can
degrade performance, even in high-input view regimes. Our
patch-based loss consistently avoids this issue, enabling im-
proved results across RGB rendering and depth/geometry
estimation.

Table 5. Scene Adaptive Loss Ablation on 45 Images. Results
are presented for a comparison between our scene-adaptive loss
approach and a global loss weighting method using diffuse LIDAR
and RGB signals. The global method computes a single, scene-
specific loss weight for both inputs across entire images, adjusting
by scene-wide SNR and texture. In contrast, our scene-adaptive
loss incorporates patch-based weighting to dynamically prioritize
signals within images; we find that our approach consistently out-
performs the global weighting approach. This is evident in im-
proved RGB rendering and depth/shape estimation, even when the
dataset size is increased to 45 training images.

Method

Blender Chair Hotdog Lego
PSNRT DMAE| | PSNRT DMAEL | PSNRT DMAEJ | PSNRT _DMAEL
() Full Texture Datasets: Scenes with full texture on object and ground plane.

Ablation - No Scene-Adaptive Patch Weight 32,67 0.025 3207 0.024 3341 0.022 3242 0.024
urs 39. 0.016 37.34 0.011 39.23 0.009 35.82 0.012
(b) Textured Object Datasets: Scenes with textured objects on completely textureless ground planes.
Ablation - No Scene-Adaptive Patch Weight | 34.61 0.023 3170 0.022 3426 0.022 30.46 0.024
urs 3784 0.018 37.39 0.016 4150 0.016 37.26 0.015
(¢) Textured Plane Datasets: Scenes with completely textureless objects on textured ground planes.
Ablation - No Scene-Adaptive Patch Weight | 32.18 0,026 3237 0025 3377 0,026 3296 0033
3628 0.021 3647 0.017 37.30 0.022 36.71 0.027

(d) Full Textureless Datasets: Completely textureless scenes.

- 0032 - 0039 - 0029 - 0033
- 0.029 - 0029 - 0.025 - 0031

Ablation - No Scene-Adaptive Patch Weight
Ours

8. Additional Quantitative Evaluation

Creating a large-scale dataset for this new diffuse LiDAR
modality, including large-scale simulated and real-world
captures with ground truth geometry labels, is a non-trivial
yet valuable direction for future work. Currently, adapt-
ing existing RGB-D datasets for evaluating diffuse LiDAR
is infeasible. Existing RGB-D datasets (e.g. [3, 6, 45])
largely do not capture the time-resolved histograms neces-
sary for diffuse LIDAR, while transient datasets (e.g. [27])
lack this new diffuse LIDAR modality. Simulating diffuse
LiDAR from point clouds introduces inaccuracies, as key
characteristics—such as spatial coverage, multi-bounce ef-
fects, cross-talk, timing jitter, and instrument response func-
tions (Sec. 13)—cannot be faithfully reproduced. To demon-
strate some extended evaluation of our method, we present
additional results on challenging rendered scenes in Tab. 6,
where our method consistently outperforms the RGB with
sparse LiDAR baseline.

/4 LiDAR
Camera
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Figure 8. Capture setup. Our capture setup enables full 360°
captures of objects in azimuth and 25° in elevation. We create
a high-texture ground plane using a wood vinyl. The object is
centered about the azimuth rotation axis. We mount the camera
and LiDAR above the object such that the majority of the cameras
FOV incorporates the ground plane.

Scene Cereal Seat & Bowl Plain Box Backpack

PUEM LS B

PSNR SSIM DMAE NMAE|PSNR SSIM DMAE NMAE|PSNR SSIM DMAE NMAE|PSNR SSIM DMAE NMAE
RGB Only| 21.67 0.8089 0.0998 37.60 |21.57 0.8318 0.0811 39.65 |22.12 0.7641 0.2017 50.95 |29.92 0.8457 0.4490 41.13
Sparse | 24.55 0.8282 0.0903 37.19 [25.13 0.8431 0.1092 3721 |22.21 0.8161 0.1085 34.96 |35.31 0.9150 0.0466 2339
Ours  |28.81 0.8513 0.0268 20.17 |27.76 0.8548 0.0225 17.82 |26.80 0.8415 0.0363 21.02 |36.45 0.8745 0.0246 11.61

Scene Dark Helmet ‘Washbasin Candlelight Bathtub
b

.
=

PSNR SSIM DMAE NMAE|PSNR SSIM DMAE NMAE
RGB Only|31.36 0.6884 0.5593 48.62 |25.80 0.8880 0.1328 48.11
Sparse | 35.43 0.8957 0.0786 41.66 |26.06 0.8815 0.0707 39.82
Ours |35.05 0.8702 0.0398 12.77 |28.33 0.9082 0.0293 26.06

PSNR SSIM DMAE NMAE
28.37 0.8627 0.1104 3935
33.55 0.9388 0.0349 29.00
35.64 0.9407 0.0218 25.19

PSNR SSIM DMAE NMAE
20.11 07864 02373 53.73
24.27 0.8820 0.0586 37.20
27.02 0.8943 0.0358 23.38

Table 6. Metrics for additional rendered scenes. Our RGB
with diffuse LiDAR approach consistently outperforms the RGB
with Sparse LiDAR baseline in challenging, low-texture, low-
light, low-albedo scenes.

9. Discussion on Peripheral Region Robustness
and Ground Plane Estimation

Our technique consistently improves object-ground sepa-
ration and plane estimation compared to baselines. Most
notably, we observed that baselines, including Gaussian
Surfels (RGB only), Surfels with monocular depth priors,
and Surfels with sparse LiDAR, exhibited consistent er-
rors in plane estimation for peripheral regions. Specifically,
these methods frequently produced meshes that either (1)
poorly separated objects from the ground or (2) achieved
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Figure 9. Robust Object/Ground Separation and Plane Esti-
mation. Our method demonstrates improved object-ground sepa-
ration and plane estimation, particularly in peripheral regions with
limited input views, outperforming conventional techniques.

reasonable plane estimation in central regions with suffi-
cient multi-view coverage but failed in peripheral regions,
i.e., distant areas with limited input views.

This issue was observed in both simulated and real-world
results, which we highlight in Fig. 9. Our method addresses
these shortcomings, offering robustness not only in texture-
less and low-SNR regions but also in peripheral and very
low-texture areas with limited input views, where tradi-
tional RGB and LiDAR-based methods lack sufficient depth
cues for accurate reconstruction.

10. Extended Baseline Comparisons

Our work focuses on 3D scanning from multi-view in-
puts, motivated by sparse LiDAR-supervised RGB scan-
ning for mobile and robotic applications. Given the increas-
ing prevalence of LiDAR-equipped smartphones, we com-
pare against baselines that employ similarly sparse LIDAR
sensors (e.g., 12x12 dot projection [23]) rather than dense
depth or scanning LiDAR systems. In addition to the re-
sults presented in the main text, we evaluate our approach
on low-texture scene scanning against Delaunay depth in-
terpolation and RGB-based depth completion [17] for 3D
scanning. We present these results in Tab. 7. We consis-
tently outperform these methods, and find that these base-
lines struggle due to the sparsity of depth in our setting, the
low-texture RGB inputs, and the lack of multi-view consis-
tency.

11. Real Data Capture Setup

Our capture setup includes two rotation axes and a sensor
mount. The real results, as shown in Figure 7, used only a
single rotation axis, however. Our capture setup is shown in

Textured Plane Datasets: Scenes with completely textureless objects on textured ground planes.

Scene Blender Chair Hotdog Lego
DMAE| NMAE| | DMAE| NMAE| | DMAE| NMAE| | DMAE| NMAE|
Surfels RGB+Depth Interpolation 0.767 68.68 0.832 68.91 0.821 68.18 0.799 67.51
Surfels RGB+Depth Completion 0.635 60.12 0.748 63.46 0.763 62.37 0.709 64.31
Ours (RGB+Diffuse LIDAR) 0.045 2113 0.037 22.80 0.034 22.32 0.046 25.69
No Texture Datasets: Completely textureless scenes.
Scene Blender Chair Hotdog Lego
DMAE| NMAE] | DMAE, NMAE| | DMAE, NMAE| | DMAE, NMAE|

Surfels RGB+Depth Interpolation | 0.841  37.40
Surfels RGB+Depth Completion

Ours (RGB+Diffuse LiDAR)

0.898 38.57 0915 4255 0.920 40.78
0.805 3251

0.042 14.54

0.729 29.30
0.045 15.68

0.783 3343
0.045 13.55

0.791 25.69
0.041 16.35

Table 7. Comparison to depth interpolation and depth com-
pletion baselines. Our diffuse LiDAR and RGB-based scanning
technique consistently outperforms these baselines in challenging
low-texture scenes.
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Figure 10. Sensor mount. We rigidly mount the LiDAR and cam-
era sensors using a 3D printed part. The camera (an Intel Re-
alSense D435i Depth Camera) has both an RGB camera, and two
IR cameras which are used to produce a dense depth map, which
we use for approximating a sparse LiDAR. We use the Arduino-
based evaluation kit provided by AMS for interfacing with the Li-
DAR sensor.

Figure 8.

Our setup enables 360° rotation in azimuth (horizontal
plane) and ~25° in elevation. During dataset acquisition,
we fix the elevation axis to be at 5° above the horizontal.
This way, the angle of the camera and LiDAR are above and
facing down towards the object such that the plane where
the object sits encapsulates most of the sensor’s views. We
mount the LiDAR and RGB camera rigidly together in order
to keep extrinsics constant throughout the acquisition. The
mount is shown in Figure 10.

The LiDAR module we use is the AMS TMF8828 [1],
which has 18 x 12 individual SPAD pixels which are
grouped into 8 X 8 measurement zones on-device. This is
done to minimize noise and reduce bandwidth limitations.
We also enable short range, high accuracy mode. This mode
reduces the overall measurement range from 10 to 1.5 me-
ters while increasing the timing resolution from 266 to 39



picoseconds per bin. This limits the object size which we
can capture, though is sufficient in handheld scanning sce-
narios. We utilize the AMS Arduino-based evaluation kit
to interface with the sensor and acquire the histogram mea-
surements. Due to limitations with Arduino serial speeds,
we receive 8 X 8 histogram measurements about 1Hz.

For RGB measurements, we use the Intel RealSense
D435i Depth Camera. This camera module has three imag-
ing sensors: two infrared cameras (IR), and an RGB sen-
sor. The IR cameras can be used to extract a high-resolution
depth map from the scene using structured light. We utilize
this depth map to approximate the measurements theoret-
ically obtained by a sparse LiDAR; we note that this is a
more faithful comparison than using the measured transient
peaks as point depths (as shown in Mu et al. [31]). The
RGB camera has a 1920 x 1080 resolution RGB sensor and
a FOV of 66° x 42°.

12. Real Data Processing

To utilize the sensor data in our algorithm, it’s necessary
to calibrate the LiDAR and RGB such that we know the
relative correspondences between pixels for rendering. We
calibrate the sensors using a custom 2D gantry system, as
shown in Figure 11.

To calibrate the LiDAR and RGB, we move the gantry
in the vertical plane along the FOV of the RGB camera and
match peak positions in the 8 x 8 sensor to the pixels in
the RGB camera. We mount a retroreflective patch on the
2D gantry which has a very high return relative to any sur-
rounding diffuse objects. We then put green tape around the
patch and use a color threshold to find the position of the
patch in the image. Given the patch’s position in the image,
and it’s corresponding peak in the LiDAR’s transient, we
can interpolate the per-pixel response of the LiDAR relative
to the RGB image.

As noted in Mu et al. [31], there is a significant amount
of crosstalk observed in the histograms. Crosstalk is effec-
tively when noise or a signal response in one pixel inter-
feres or is measured in neighboring pixels. We have found
this crosstalk is exhibited non-uniformly across all pixels
and is dependent on both the position and surface proper-
ties of objects we captured. We do not model this crosstalk
through our calibration. To reduce crosstalk, high-SNR re-
gions were isolated via thresholding, followed by power-
law normalization and intensity scaling to normalize tran-
sients. While we do not explicitly model crosstalk in our
forward model, we consider this modeling as relevant fu-
ture work.

13. Simulation and Real Capture Differences

In this section, we discuss key differences between simu-
lated and real-world setups that help explain the discrep-

Sensors

Retroreflective
Patch

Figure 11. Calibration setup. To calibrate the LIDAR and cam-
era modules, we utilize a 2D gantry system to precisely position a
retroreflective patch in the FOV of the sensors. We find the corre-
sponding peak (which has a very large return because the patch is
retroreflective) and pixel position of the patch for the entire FOV
of both sensors.

ancies observed between results in these settings. While
we noticed similar trends in both setups—such as improved
geometry estimation with fewer input images, enhanced ob-
ject/ground separation, better plane estimation, and finer ge-
ometric detail for diffuse LiDAR over sparse LIDAR—there
were notable differences as well.

In real-world captures, we observed that more images
were required for training, object/ground separation was
slightly poorer, and geometric details were less precise than
in simulation. While the superiority of RGB and diffuse
LiDAR modeling over sparse LIDAR was evident in both
cases, these observations motivate a discussion of the dif-
ferences between our simulated and real-world regimes.

IFOV, pixel overlap, and response area. One key dif-
ference between simulation and real hardware captures us-
ing the TMF8828 is related to pixel instantaneous field of
view (IFOV), overlap, and response areas. In simulation,
we modeled a fixed horizontal and vertical pixel IFOV of
approximately 4.9° with no overlap (stride) between pix-
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Figure 12. TMF8828 Pixel Overlap. The diffuse LiDAR sensor
we use (TMF8828, $10 retail) has an 18 x 12 SPAD array that
is grouped into 8 x 8 pixels; these groups have designed overlap
that introduces an additional spatial mixing into measurements.
We model this pixel overlap through sensor calibration, and con-
sider it one additional deconvolution required in our analysis-by-
synthesis framework. Note that this overlap is distinct from cross-
talk, which we discuss in Sec. 12
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Figure 13. Diffuse LiDAR Pixel Responses. We visualize the re-
sponse intensity for different scanned gantry locations (each with
a small retroreflective patch) for three separate diffuse LiDAR
pixels. We observe 1) non-uniform responses induced by dif-
ferent spacing between the LiDAR grouped-pixel array rows and
columns, and 2) weaker, noiser responses at the peripheral pixels.

els. However, calibration of real hardware revealed several
critical deviations: 1) Response area grouping and overlap.
According to TMF8828 specifications, the original 18x12
SPAD array is grouped into 8x8 response areas with in-
tentional overlap Fig. 12. This overlap introduces addi-
tional deconvolution required during forward rendering to

resolve pixel overlap ambiguities. Furthermore, the original
SPAD grid exhibited non-uniform spacing between pixel
rows and columns, leading to horizontal offsets between
grouped pixel rows. 2) Variable IFOVs. Calibration re-
vealed significant variability in pixel [FOV depending on
location. Specifically, we observed that (1) pixel IFOVs are
horizontally wider than they are tall, and (2) peripheral pix-
els have much smaller response areas compared to central
pixels Fig. 13.

These differences have two main consequences: 1) Pix-
els are unevenly spaced and capture non-uniform spatial re-
gions, with central pixels covering the most relevant scene
information. 2) Peripheral pixels were often noisy, and in
particular, the top row of pixels showed no overlap with
RGB data. Consequently, we mask out this region during
training, resulting in a smaller effective region of diffuse Li-
DAR response compared to simulation. These differences
between simulated and real-world setups highlight the chal-
lenges posed by hardware-specific characteristics and their
impact on modeling accuracy.

Camera Poses. A significant difference between our
simulated and real-world experiments lies in the accuracy
of camera poses. In simulation, we used ground-truth cam-
era poses, whereas in real-world experiments, camera poses
were estimated using COLMAP. Given the challenging na-
ture of our scenes, COLMAP-estimated poses are expected
to be less accurate than the ground truth used in simulation.
While this discrepancy could partly explain differences be-
tween simulated and real-world results, we emphasize that
our method demonstrates robust performance even when us-
ing COLMAP-estimated poses for all captures (see main
paper). This highlights the strength of our diffuse LiDAR-
guided approach, which remains effective even under less
accurate, scene-estimated camera poses.

Crosstalk. In our real-world captures using the
TMF8828 sensor, we observed a degree of crosstalk that
could not be accounted for during calibration. This
crosstalk is distinct from pixel overlap, which we explic-
itly model through calibration. An extended discussion of
crosstalk is provided in Section 12. We did not model this
crosstalk in simulation, as we consider it a limitation of the
specific sensor hardware rather than an inherent property of
diffuse LiDAR. In practice, we expect that diffuse LIDAR
systems with improved sensor designs would not exhibit the
crosstalk observed in the TMF8828.

14. Details on Recoverability Analysis

In this section, we elaborate on the approximate forward
model used to analyze the benefits of diffuse LiDAR in
Sec. 3.2 of the main text. We perform analysis and deriva-
tions in 2D without loss of generality.

We first voxelize the volume of interest, with the origin
(0,0) at the center of the voxel grid. The camera moves



in such a way that the optical axis of the camera always
points towards the origin, and the camera remains a constant
distance away from the origin. For our analysis, we model
a single-pixel camera with a defined field of view (FOV).
Assuming the scene consists of a single voxel v and the
camera is located at x.., the transient measurement is

iy (t;xe) = p(v) - d(ct — 2|x, — X¢|), a7

where p(v) € R, is the amount of light reflected by voxel
v. Due to the linearity of light transport, the ToF measure-
ment, after accounting for the contribution from all voxels,
can be modeled as

i(t;XC) = Zp(v) : V(XCaXU) : iv(t§xc)7 (18)

veEY

where V(x.,%,) € {0,1} denotes the visibility between
the camera and the voxel v and V is the set of all voxels
in the IFOV of the pixel. The visibility term models occlu-
sions and self-occlusions, but introduces non-linearity into
the forward model because the visibility of one voxel is de-
termined by the occupancy of other voxels. In order to sim-
plify our analysis, we neglect this visibility term. Doing so
simplifies the transient measurement as

i(t;x.) = Z p(v) iy (t;xc) (19)

veV

Temporal discretization of Eq. (19) leaves us with

i. = Z Pv - ic,v (20)
veY
— Ap @1

where i, € R™ is the transient measurement at camera
location ¢, p € RNv is the contribution of each voxel to
the transient measurement, and A, € RYN+*Nv ig the linear
operator from voxel occupancy to transient measurement.
The ith columns of A . contains the temporal delta response
corresponding to the ith voxel, as indicated by Eq. (17). By
vertically stacking the measurements at all camera locations
i. and their corresponding measurement operators A, we
obtain a final linear model of the formi = Ap

iy Ay
=1 e (22)
in,, AN,
——
i A

where A € RNmNtexXNv ' N5 the number of camera mea-
surements and i € R¥=Nt Because the A matrix is a

function of the IFOV (Eq. (19)) and number of measure-
ments, we can analyze the impact of these two parameters
by studying the invertability properties (we use rank in this
work) of A as these parameters vary.

15. Sparse LiDAR Reaches Diffuse LiDAR Per-
formance with Sufficient Views

Below, we experimentally demonstrate that the benefits of
diffuse LiDAR described in our analysis of scene recover-
ability (Sec. 3.2) hold true in our simulated test settings.
Specifically, we find that sparse LiDAR can eventually
match the performance of diffuse LiDAR, particularly in
input view-limited regimes. Results for our four simulated
scenes (Blender, Chair, Hotdog, Lego) across texture varia-
tions are shown in Tab. 8. We evaluate geometry estimation
performance (depth and normals) of our method using RGB
and diffuse LiDAR with 3 and 10 input views (the latter
shown in the main paper). We compare this against the per-
formance of sparse LiDAR with RGB, varying the number
of input views from 3 to 30.

Our findings indicate that RGB with sparse LiDAR re-
quires approximately 2-3 x more input views to achieve the
performance of RGB with diffuse LiDAR. Specifically: 1)
for geometry estimation at 3 input views with RGB and dif-
fuse LiDAR, sparse LiDAR typically requires 10-15 views
to achieve equivalent performance, and 2) for geometry es-
timation at 10 input views with RGB and diffuse LiDAR,
sparse LiDAR typically requires 25-30 views.

These findings align with our earlier analysis: in input
view-limited settings, diffuse LiDAR provides greater cov-
erage and improved recoverability compared to sparse Li-
DAR. As the number of input views increases, this differ-
ence diminishes. With sufficient input views, RGB with
sparse LiDAR can eventually match—and in some cases
surpass—RGB with diffuse LiDAR. Finally, while we ob-
serve consistent improvements in depth and normal estima-
tion, RGB estimation (e.g., PSNR) for sparse LiDAR im-
proves with more views. However, these RGB gains often
overfit to training data due to inaccuracies in geometric es-
timation, underscoring the robustness of diffuse LiDAR in
challenging regimes.

16. Low Lighting with Poisson Noise

In the main paper, we approximate low-lighting conditions
by adding Gaussian noise. While this provides a reasonable
approximation for many scenarios, Poisson noise is a more
accurate model for very low-light conditions. To evaluate
the robustness of our method under these conditions, we
simulate Poisson noise in our experiments. Poisson noise is
simulated by scaling pixel intensities by a factor, sampling
noise from a Poisson distribution with the scaled intensities
as the mean, and rescaling the noisy values back to the orig-
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Figure 14. Low Lighting Robustness under Poisson Noise. Our
method maintains robust depth and geometry estimation by dy-
namically weighting diffuse LiDAR signals more heavily as RGB
signals become unstable in high-noise, low-light conditions.

Table 8. RGB + Sparse LiDAR eventually reaches RGB and
diffuse LiDAR performance with sufficient views. We compare
sparse LiDAR with varying numbers of input training views to our
method, using RGB and diffuse LiDAR, using both 3 and 10 input
views. We observe that our method has reasonable performance,
relatively stable across texture variations, for even 3 input views,
and improved geometry modeling with 10. RGB with Sparse Li-
DAR, on limited input views, has significantly worse geometry
estimation, but eventually reaches our performance in about 2 to
3% the number of input views required for our method.

Train

Method o
Views

Blender Chair Hotdog Lego
DMAE! NMAE| | DMAEL NMAE| | DMAEL NMAE] | DMAEL NMAE]

(a) Full Texture Datasets: Scenes with full texture on object and ground plane

Surfels RGB w/ Sparse LIDAR 3 0.239 70.06 0.287 7341 0.189 70.39 0.220 73.68

Surfels RGB w/ Sparse LIDAR 6 0.113 47.99 0.120 53.56 0.106 50.26 0.116 50.77

10 0.058 2474 0.057 2344 0.054 29.49 0.058 30.63

i 15 0,048 251 0.060 25.60 0,054 2825 0050 3112

s RG] 20 0041 2143 0.040 19.38 0,039 2488 0043 2699

s RG] 25 0035 1935 0031 17.20 0,028 2157 0032 2441

Surfels RGB w/ Sparse Li 30 0026 1620 0018 1253 0021 1783 0,027 2086

Ours (RGB + Diffuse LIDAR) 3 0.086 31.54 0.110 38.16 0.072 3472 0.093 3388

Ours (RGB + Diffuse LiDAR) 10 0.025 19.17 0.017 18.05 0.016 24.62 0.025 25.27
(b) Textured Object Datasets: Scenes with textured objects on completely textureless ground planes.

Surfels RGB w/ Sparse LIDAR 3 0.344 73.12 0.385 7735 0272 75.46 0314 73.07

IDAR 6 0.209 65.55 0.225 60.38 0.196 62.20 0.203 69.99

S 10 0.105 36.91 0115 3868 0.080 3498 0093 3999

Surfels RGB w/ Sparse LIDAR | 15 0.063 2469 0.064 2396 0,066 3013 0,089 3747

Surfels RGB w/ S iDAR | 20 0,049 2047 0031 1405 0.064 3061 0.063 3127

i 25 0,049 2010 0025 1293 0055 2678 0033 2175

30 0.040 16.96 0.007 6.52 0.021 16.70 0.040 24.06

Ours (RGB + Diffuse LIDAR) 3 0.066 15.63 0.044 1248 0.045 17.85 0.044 19.10

Ours (RGB + Diffuse LIDAR) 10 0.033 1047 0.030 7.33 0.024 16.34 0.024 16.94

(©) Textured Plane Datasets: Scenes with completely textureless objects on textured ground planes.

Surfels RGB w/ Sparse LIDAR 3 0213 6871 0.293 7322 0245 7473 0231 7116

6 0138 48.09 0.131 5471 0123 60.09 0151 57.96

10 0057 2395 0.063 3137 0045 2928 0.067 3106

15 0.067 2654 0.059 27.63 0053 30.76 0.060 35.05

20 0037 2133 0.044 2450 0043 2829 0.047 2913

25 0031 18.68 0.035 2082 0034 2368 0037 26.15

30 0020 1457 0.020 16.62 0021 1874 0.030 2332

3 0133 3045 0.143 3186 0113 2921 0.130 3337

Ours (RGB + Diffuse LIDAR) 10 0045 2113 0.037 2280 0034 232 0.046 25.60
(d) Full Textureless Datasets: Completely textureless scenes.

3 0385 7613 0.402 78.29 0399 7869 0.398 7973

6 0210 61.01 0214 58.80 0.167 55.30 0.161 47.46

10 0125 40.86 0.107 3729 0111 4354 0.106 41.63

15 0056 2330 0.068 26.63 0043 28.09 0.084 3123

20 0.069 2668 0074 2842 0.041 2642 0053 2523

25 0036 17.12 0.050 2113 0032 2259 0028 1773

30 0021 1236 0033 16.50 0011 15.94 0033 19.49

e LiDA] 3 0117 247 0.119 2118 0073 19.06 0.081 1838

Ours (RGB + Diffuse LIDAR) 10 0045 1568 0.045 13.55 0041 16.35 0.042 1454

inal range. Lower scaling factors correspond to higher noise
levels, as they effectively reduce the signal intensity.

Our results show that our method consistently estimates
accurate depth and geometry, even under the noisiest con-
ditions. This finding aligns with the results presented in
the main paper, where we demonstrated robustness to added
Gaussian noise. In very low-SNR, high-noise regimes, our

approach effectively shifts reliance to the diffuse LiDAR
signal, enabling robust reconstruction in challenging low-
light conditions.
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