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6. Advantages of Charm over existing ap-
proaches

Charm is not the first approach to focus on processing im-
ages at their original resolution. A prominent method in
this area is AnyRes [1]. To show the added value of Charm,
we analyzed the Hugging Face implementation of AnyRes
(LlavaNextImageProcessor). While Charm can process im-
ages of any size, AnyRes resizes and pads images to a reso-
lution that is a multiple of the patch embedding module’s in-
put. Then, the images are divided into smaller sub-images,
which, along with a downscaled version of the original im-
age, are independently encoded by patch embedding mod-
ules. This prevents the model from capturing relationships
between smaller sub-images. Additionally, AnyRes does
not account for cross-scale relationships and treats tokens
from different scales equally. In contrast, Charm leverages
position and scale embeddings to effectively capture im-
age composition and cross-scale relationships. For batch
processing in AnyRes, additional padding is required as
images produce different numbers of sub-images. AnyRes
achieved PLCC/SRCC/ACC scores of 0.637/0.619/0.697
on the AADB dataset, which are lower than the standard
Dinov2-small tokenizer (0.695/0.682/0.754, respectively).
This is likely due to excessive padding at various stages,
which significantly impacts IAA (see Table 2 in the paper).

Closet to Charm are mixed-resolution [15] and mixed-
scale tokenization [4]. To understand the difference be-
tween charm and these approaches, consider two versions
of a 1024×1024 image: one sharp and the other unsharp.
This difference clearly affects their aesthetic scores, requir-
ing distinct representations for the network to differentiate
them. Refs. [15] and [4] first downscale both images to
a small fixed size, then retain resolution in some regions
while further downsizing others. This produces identical
representations for both versions, sufficient for classifica-
tion but inadequate for aesthetics. In contrast, Charm incor-
porates high-frequency information from the original image
that gets lost with downsampling. Furthermore, while other
methods rely on patches from 2 fixed resolutions, Charm
is more flexible, learning from patches across varying res-
olutions. Table 3 in the paper shows Charm significantly
outperforms these methods (identified as MS).

7. 3-scale Charm
Charm tokenization prepares a sequence of image patches,
each with a size of p × p × c, where p is the patch size of
ViT’s patch encoding module and c is the number of chan-
nels. For low-resolution images, we directly tokenize the

Dataset Charm Scale PLCC SRCC ACC

AVA
- 1 0.710 0.706 0.802
✓ 2 0.779 0.779 0.826
✓ 3 0.759 0.757 0.817

AADB
- 1 0.695 0.682 0.754
✓ 2 0.767 0.754 0.767
✓ 3 0.753 0.745 0.775

Table 6. Performance of Dinov2-small on AVA and AADB
datasets across different scales.

image using the patch size of p (as mentioned in Section
3.2.1).

For high-resolution images, we employ a multiscale ap-
proach. When dealing with 3-scales, we first define our
patch sizes as follows:

patch sizes = {αp, βp, γp} (1)

where γ > β > α, {γ, β, α} ∈ N. The maximum down-
scaling is f = α/γ.

The image is initially tokenized using the largest patch
size (γp). A subset of patches is then selected and further
tokenized using the base patch size (p). We then select an-
other subset of patches from unselected regions for the sec-
ond scale. These selected regions are downscaled to the
intermediate patch size (βp) and then tokenized using p. Fi-
nally, the remaining regions are downscaled to the smallest
patch size (αp) and then further tokenized using p.

As discussed in Section 4.4.5, a scaling factor of f = 0.5
yields optimal results. Consequently, we employ patch sizes
of 2p, 3p, 4p for our 3-scale version. Table 6 indicates that
the 2-scale Charm tokenization yields the best performance
on AVA and AADB datasets.

8. Patch selection strategies
To identify important areas for patch selection, we explore
various strategies. The goal is to preserve visually interest-
ing regions and sharp details in high resolution.

We initially consider using saliency maps generated by
the SAM-HQ model [8] with different prompts. These
prompts include “figure ground reversal,” “figure ground
separation,” “figure ground segmentation,” “camo object,”
“salient object,” and “hidden object.” All of these prompts
represent the figure-ground organization, where humans
simplify a scene into the main object (the figure) and ev-
erything else (the background) [14, 21]. The results show
that the ’salient object’ is the most effective prompt. After
creating saliency maps, we randomly select patches within
the salient area in each epoch.



Figure 7. Examples of saliency maps generated by SAM-HQ with
the prompt of “salient object”. The final row shows a failure case
where the Sam-HQ model did not detect any salient object.

Figure 7 shows examples of the salient objects identified
by the model. In rare cases, the model fails to identify any
salient objects. In such instances, we simply consider the
entire image as salient, ensuring that patches are selected
from all areas. The rate of model failures is negligible, less
than 0.14% in the AVA dataset.

We also consider other methods, such as frequency, gra-
dient, and entropy, to identify important regions. These
metrics are calculated using the Fast Fourier transform, So-
bel filter, and Shannon entropy, respectively. We start with a
fully deterministic approach, selecting only patches with the
highest frequency, entropy, or gradient. We then investigate
whether introducing a degree of randomness can improve
performance. To balance determinism and randomness, we
introduce a threshold parameter (t). To select patches, we
first rank them based on their frequency, entropy, or gradient
values. We then select a larger number of patches (t times
the desired number) with the highest scores. Finally, we
randomly select the required number of patches from this
pool in each epoch. As shown in Figure 9, smaller values of
t result in lower variability and higher correlation between

Tokenization PLCC SRCC ACC
Standard 0.695 0.682 0.754
Charm + Random (first epoch) 0.705 0.693 0.756
Charm + Random (each epoch) 0.767 0.754 0.767

Table 7. Performance of Dinov2-small on the AADB dataset us-
ing different tokenization approaches. Charm with random patch
selection in each epoch achieves the best performance.

selected patches.
We fine-tune Dinov2-small on the AADB dataset us-

ing different thresholds. Figure 10 indicates that increasing
the threshold t generally improves validation performance.
However, we use t = 2 to balance the inclusion of high-
frequency, entropy, and gradient-based patches while main-
taining diversity in the selected regions.

We also consider random patch selection. Table 7
demonstrates that randomly selecting patches in the first
epoch and keeping them fixed throughout training yields
better results than the standard Dinov2-small (around 1 %
improvement). However, by randomly selecting patches in
each epoch, we can achieve further performance improve-
ments, surpassing other approaches (Table 8). Randomly
sampling patches in each epoch exposes the ViT model to
different regions of the image in high resolution. This diver-
sity in training data helps prevent overfitting. Red squares
in Figure 8 demonstrate the selected patches using our patch
selection strategies.

9. Fine-tuning Dinov2-small for IAA
The original Dinov2 code downscales images to the short-
est edge of 256 and applies center cropping to create fixed
input sizes (224 × 224). Additionally, images are normal-
ized, a common practice in deep learning to help the net-
work learn faster and better. However, we observed that
normalization can negatively impact IAA performance (Ta-
ble 9) due to significant changes in the images (Figure 11).
As a result, we remove normalization. Also, after down-
scaling images to the shortest edge of 256, we use random
cropping instead of center cropping. As shown in Table 10,
our approach outperforms the original Dinov2-small setting
for IAA. Throughout this paper, the ’Standard approach’
refers to our settings.

10. Data augmentation methods
Some argue that existing global data augmentation tech-
niques, which alter the entire image, can potentially change
the aesthetic labels and should thus be avoided in IAA [19].
However, ViTs are prone to overfitting and often require
large datasets for fine-tuning, which can be challenging in
IAA. Among existing global data augmentation methods,
horizontal flipping, random rotation (at angles of 90, 180,



Figure 8. Visualization of patch selection strategies. Red squares highlight areas selected by different methods. Frequency, gradient, and
entropy approaches are fully deterministic in these examples.

Patch selection Charm PLCC SRCC ACC
train test train test train test

Random ✓ 0.800 0.767 0.794 0.754 0.801 0.767
Frequency ✓ 0.831 0.756 0.824 0.747 0.815 0.761
Entropy ✓ 0.891 0.726 0.887 0.714 0.823 0.761
Gradient ✓ 0.838 0.734 0.845 0.721 0.825 0.766
Saliency ✓ 0.870 0.751 0.862 0.738 0.835 0.756
Standard - 0.768 0.695 0.753 0.682 0.773 0.754

Table 8. The performance of Dinov2-small on the AADB dataset using different patch selection approaches. Bold and underlined numbers
represent the best and second-best results. This table is the extended version of Table 4 in the paper. We use t = 2 to ensure a diverse set
of patches with high frequency, entropy, and gradient.

Normalization PLCC SRCC ACC
True 0.474 0.446 0.664
False 0.488 0.458 0.794

Table 9. The effect of image normalization on the performance of
Dinov2-small + Charm on the TAD66k dataset. Image normaliza-
tion negatively affects the IAA.

or 270 degrees), and grayscale augmentation preserve the
composition of elements. We apply these methods to eval-
uate their impact on model performance. Figure 12 shows
examples of these augmentations, which are applied with a
probability of 50%.

While these augmentations may affect human aesthetic

Implementation PLCC SRCC ACC
Standard 0.697 0.694 0.799
Our settings 0.710 0.706 0.802

Table 10. Performance of Dinov2-small on the AVA dataset with
two different data preprocessing approaches.

judgment, they consistently improve the generalizability
of ViTs (as shown in Table 11). Grayscale augmentation
slightly decreases performance, highlighting the importance
of color in IAA. Therefore, we only use random horizontal
flipping and random rotation in our experiments.



Figure 9. The impact of different thresholds (t) on the frequency, gradient, and entropy-based patch selection. Increasing the value of t
introduces more diversity to the selected patches.

Figure 10. The performance of Dinov2-small + Charm on the AADB dataset using gradient-based patch selection with different thresholds
(t). The results are averaged over 5 runs on the validation set. Generally, increasing the threshold (t) leads to improved performance.

11. Comparing dataset resolutions
We compare the image resolutions within both IAA and
IQA datasets. Resolution represents the number of pixels
in the image and is calculated by multiplying the width and
height of images. As shown in Figure 13, PARA and SPAQ
have the highest variety and resolution compared to the oth-
ers. Among the other datasets, AVA has the lowest resolu-
tion, and all datasets exhibit a normal distribution of image
resolutions. As all images in KonIQ10k have a fixed res-
olution of 1024 × 768 pixels, it appears as a single line in

the box plot. Our analysis shows no significant differences
in image resolution between the training and test sets of the
datasets.

12. Importance of scale embedding
A key focus of this paper is to preserve the composi-
tional relationships between elements. To achieve this,
we avoid cropping and use position and scale embeddings
to capture the relationships between tokens both across
and within different scales. Adding scale embedding to



Augmentation PLCC SRCC ACC
train test train test train test

No augment 0.833 0.768 0.829 0.766 0.859 0.822
HF 0.818 0.776 0.812 0.775 0.851 0.824
HF + G 0.823 0.774 0.817 0.772 0.855 0.824
HF + R 0.801 0.779 0.791 0.777 0.843 0.826
HF + R + G 0.783 0.778 0.772 0.777 0.834 0.824

Table 11. The performance of Dinov2-small + Charm on the AVA dataset using different data augmentation methods. HF, G, and R
represent horizontal flipping, grayscale augmentation, and random rotation, respectively. Bold and underlined numbers represent the best
and the second-best results.

Figure 11. The effect of normalization on an image. Normaliza-
tion can introduce visual artifacts and distort the aesthetic quality
of an image.

Dinov2-small with the Charm tokenizer increases PLCC/S-
RCC/ACC from 0.748/0.739/0.750 to 0.767/0.754/0.767 on
the AADB dataset. This 2% improvement surpasses the
scale embedding gains reported in Ref. [7]. This is likely
because we leverage scale embedding alongside the pre-
trained position embeddings of the ViT rather than intro-
ducing new position embeddings.

13. The maximum number of patches (l)

We conduct ablation studies with different input lengths (l)
during training. The optimal value for l should be cho-
sen based on the image resolutions in the dataset. Setting
l larger than the average number of patches (average of s
across images) can lead to excessive padding while setting
it smaller can result in excessive cropping. Both scenarios
can negatively impact performance in IAA. For example,

Figure 12. Data augmentation methods that preserve the composi-
tion of elements in the image. HF, G, and R represent horizontal
flipping, grayscale augmentation, and random rotation.

Input length(l) PLCC SRCC ACC
768 0.743 0.739 0.770
1024 0.767 0.754 0.767
1500 0.736 0.727 0.775

Table 12. The impact of input length (l) on performance of
Dinov2-small + Charm on the AADB dataset. Selecting the op-
timal l value is crucial for achieving the best results.

in the AADB dataset, the average number of patches after
preprocessing using Charm is 1090. As shown in Table 12,
an input length (l) of 1024, which is closest to the average
number of tokens, yields the best performance for predict-
ing the aesthetic score.

14. Charm’s influence on various ViTs
In this section, we demonstrate that incorporating Charm
enhances the performance of various ViT models. We eval-
uated its effectiveness on different backbones, including



Figure 13. Distribution of image resolutions across datasets.

Model Charm PLCC SRCC ACC
Dinov2
-small

- 0.710 0.706 0.802

✓
0.779
(↑ 6.9%)

0.777
(↑ 7.1%)

0.826
(↑ 2.4%)

ViT-small
- 0.687 0.679 0.794

✓
0.762
(↑ 7.5%)

0.760
(↑ 8.1%)

0.827
(↑ 3.3%)

Dinov2
-large

- 0.734 0.732 0.808

✓
0.783
(↑ 4.9%)

0.781
(↑ 4.9%)

0.828
(↑ 2%)

Table 13. Performance improvement across different models on
the AVA dataset by replacing their standard tokenization with
Charm. All experiments using Charm employ a random patch se-
lection strategy.

ViT-small, Dinov2-small, and Dinov2-large. As shown in
Table 13, Charm significantly improves performance on the
AVA dataset across all tested models. These results indicate
that Charm is not dependent on a specific architecture and
performs consistently well across both smaller and larger
models.

15. Super high-resolution images

As shown in Figure 6 and Table 5 in the paper, increas-
ing the resolution can increase the computational costs of
our method. This is especially challenging when dealing
with extremely large images (e.g., 3k by 4k pixels). How-
ever, our experiments on the PARA dataset demonstrate that
there is a threshold for performance improvement due to
preserving high-resolution information. Beyond this thresh-
old, further performance gains are limited. By downscaling
images to a maximum edge of 1024, we can significantly
reduce computational costs without sacrificing much per-

Image size PLCC SRCC ACC
Standard 0.904 0.855 0.863
Maximum edge = 1024 0.938 0.905 0.892
Maximum edge = 1500 0.940 0.908 0.900

Table 14. Performance of Dinov2-small on PARA dataset with
different resolution. “Standard” refers to the approach explained
in Appendix 9. The others use Charm. Processing images in high
resolution positively affects the performance of the IAA model.

Figure 14. From left to right: the original image, downscaled im-
age by bilinear interpolation, and downscaled image by Muller.
While effective in image classification, the Muller method can in-
troduce distortions that negatively impact aesthetics.

Figure 15. Comparison of Dinov2-small standard input (Section 9)
and padded input (Section 16). While padding preserves the aspect
ratio, it can negatively impact the performance of IAA models.

formance. Table 14 shows that the performance difference
between downscaling to the maximum edge of 1024 and
1500 is less than 0.3% in PLCC and SRCC and only 0.8%
in ACC. This suggests that processing images at excessively
high resolutions may not provide significant benefits, espe-
cially considering the increased computational costs.

16. Dinov2 + Muller / Padding
Muller [20] is a learnable resizer that aims to boost details
in certain frequency subbands during downscaling. While
effective in image classification, Muller can introduce dis-
tortions (Figure 14) that negatively affect aesthetics (Table
2).

A straightforward approach to preserving the aspect ra-
tio is to add padding to images. For this approach, we resize



images to a maximum edge of 512 and add padding (Fig-
ure 15). While this approach preserves the aspect ratio and
maintains higher-resolution images compared to the stan-
dard method, it yields worse results (Table 2), highlighting
the significant negative impact of padding in IAA. More-
over, padding not only fails to add valuable information but
also significantly increases the training costs of the standard
Dinov2-small model.

17. Detailed comparison of our approach with
state of the art in IAA and IQA

Table 15 and 16 illustrate the detailed comparison of our ap-
proach with state-of-the-art models in IAA and IQA. Charm
focuses on crucial image-based factors to improve the per-
formance of ViTs, which are the foundation of many state-
of-the-art IAA models. While the use of multimodal mod-
els is orthogonal to Charm’s contribution, it is likely that
integrating Charm in a multimodal method will lead to im-
proved performance. Unfortunately, none of these meth-
ods (refs. [6],[16], [11], and [23]) have released their code,
preventing us from testing this hypothesis. Other methods
(refs. [9], [3], and [10]) are CNN-based.

Additionally, our approach achieves comparable perfor-
mance while having considerably fewer parameters (Figure
4). Our approach adds only 1152 parameters to the Dinov2-
small model for the scale embedding (1, 2, 384) and mask
token (1, 1, 384). The mask token is a learnable parameter
used in the masking process of the input. In batch training,
masks are used to identify effective inputs while ignoring
padding tokens that may be present in some images.

18. The effect of varying number of tokens in
Table 3

We evaluated the standard tokenizer with 384×384 input
images (vs. 224×224 used in Table 3), producing 729 to-
kens — comparable to Charm’s 768 on the Tad66k dataset.
Using the Dinov2-small backbone, this setting achieved
PLCC/SRCC/ACC of 0.429/0.404/0.653 on TAD66k, while
Charm reached 0.488/0.458/0.794. Charm’s strong IAA
performance is therefore not due to a higher number of to-
kens but rather its ability to preserve aspect ratio, composi-
tion, and high-resolution details, along with its patch selec-
tion strategy that alleviates overfitting.

19. Downscaling factor
Figure 2 illustrates 2-scale Charm, where important areas of
the image are further tokenized using a patch size of p while
others are downscaled to p. As described in Section 3.2.1,
the amount of downscaling is defined by f . As shown in Ta-
ble 18, a large f negatively impacts model performance due
to increased information loss from downscaling unselected
regions.

20. Integrating Charm with the Swin trans-
former

Charm is incompatible with the Swin transformer [13] due
to Swin’s reliance on relative position embeddings and
patch merging to capture the hierarchy. Swin transformer
requires a specific token order and a fixed grid of patches,
which are not guaranteed by Charm’s tokenization pro-
cess. While integrating Charm with the Swin Transformer
presents challenges, it remains a promising direction for fu-
ture research.
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Blankevoort, and Babak Ehteshami Bejnordi. Msvit:
Dynamic mixed-scale tokenization for vision transformers.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 838–848, 2023. 1

[5] Shuai He, Anlong Ming, Shuntian Zheng, Haobin Zhong,
and Huadong Ma. Eat: An enhancer for aesthetics-oriented
transformers. In Proceedings of the 31st ACM International
Conference on Multimedia, pages 1023–1032, 2023. 8

[6] Yipo Huang, Leida Li, Pengfei Chen, Jinjian Wu, Yuzhe
Yang, Yaqian Li, and Guangming Shi. Coarse-to-fine im-
age aesthetics assessment with dynamic attribute selection.
IEEE Transactions on Multimedia, 26:9316–9329, 2024. 7,
8

[7] Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and
Feng Yang. Musiq: Multi-scale image quality transformer.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 5148–5157, 2021. 5, 8

[8] Lei Ke, Mingqiao Ye, Martin Danelljan, Yu-Wing Tai, Chi-
Keung Tang, Fisher Yu, et al. Segment anything in high qual-
ity. Advances in Neural Information Processing Systems, 36,
2024. 1

[9] Leida Li, Yipo Huang, Jinjian Wu, Yuzhe Yang, Yaqian Li,
Yandong Guo, and Guangming Shi. Theme-aware visual
attribute reasoning for image aesthetics assessment. IEEE
Transactions on Circuits and Systems for Video Technology,
33(9):4798–4811, 2023. 7, 8

[10] Leida Li, Tong Zhu, Pengfei Chen, Yuzhe Yang, Yaqian Li,
and Weisi Lin. Image aesthetics assessment with attribute-
assisted multimodal memory network. IEEE Transactions
on Circuits and Systems for Video Technology, 33(12):7413–
7424, 2023. 7, 8



Algorithm MM
AVA AADB TAD66k PARA BAID

# params
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

[9] ✓ 0.736 0.725 0.763 0.761 - - 0.940 0.911 - - 48.84 M
[6] ✓ 0.753 0.751 0.770 0.768 - - - - - - 87 M
[3] ✓ 0.754 0.752 - - - - 0.928 0.895 - - 76.7 M
[16] ✓ 0.779 0.771 - 0.79 - - 0.951 0.926 - - 149.6 M
[11] ✓ 0.785 0.776 - 0.771 - - - - - - 3.149 B
[10] ✓ 0.83 0.816 - - - - - - - - 158.8
[23] ✓ 0.834 0.819 - - - - - - - - 135.5 B
[17] - 0.758 0.758 - - 0.553 0.530 - - 0.558 0.508 56 M
[12] - 0.777 0.764 0.772 0.760 0.539 0.496 0.943 0.912 - - 3 B
[5] - 0.814 0.803 - - 0.546 0.57 - - - - 87 M
[22] - - - - - - - - - 0.473 0.467 27.3 M
Dinov2-small +
Charm

- 0.779 0.777 0.767 0.754 0.488 0.458 0.940 0.908 0.439 0.368 21.53 M

Table 15. Detailed comparison of our approach with existing IAA models. MM represents using multimodal data like text and attributes.
Our approach achieves comparable performance to state-of-the-art IAA models while using significantly fewer parameters. Bold and
underlined numbers represent the best and the second-best methods.

Algorithm
SPAQ KonIQ10k

# params
train test train test

[18] 0.928 0.923 0.945 0.934 30.97 M
[2] 0.924 0.921 0.939 0.926 25.6 M
[7] 0.921 0.917 0.928 0.916 27 M

Ours 0.919 0.915 0.944 0.930 21.53 M

Table 16. Detailed comparison of our approach with existing IQA
models. Our approach falls slightly behind state-of-the-art meth-
ods in IQA, with a difference of less than 1% in SPAQ and 0.4%
in KonIQ10k. While other studies have reported the median of 10
runs, we conducted 5 runs and found consistent results, with stan-
dard deviations below 0.006 for SPAQ and 0.002 for KonIQ10k.
Bold and underlined numbers represent the best and the second-
best methods.

[11] Leida Li, Xiangfei Sheng, Pengfei Chen, Jinjian Wu, and
Weisheng Dong. Towards explainable image aesthetics as-
sessment with attribute-oriented critiques generation. IEEE
Transactions on Circuits and Systems for Video Technology,
2024. 7, 8

[12] Limin Liu, Shuai He, Anlong Ming, Rui Xie, and Huadong
Ma. Elta: An enhancer against long-tail for aesthetics-
oriented models. In Forty-first International Conference on
Machine Learning. 8

[13] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 7

[14] Mary A Peterson. Low-level and high-level contributions to
figure-ground organization. 2014. 1

[15] Tomer Ronen, Omer Levy, and Avram Golbert. Vision trans-
formers with mixed-resolution tokenization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4613–4622, 2023. 1

[16] Xiangfei Sheng, Leida Li, Pengfei Chen, Jinjian Wu,
Weisheng Dong, Yuzhe Yang, Liwu Xu, Yaqian Li, and
Guangming Shi. Aesclip: Multi-attribute contrastive learn-
ing for image aesthetics assessment. In Proceedings of the
31st ACM International Conference on Multimedia, pages
1117–1126, 2023. 7, 8

[17] Tengfei Shi, Chenglizhao Chen, Zhenyu Wu, Aimin Hao,
and Yuming Fang. Improving image aesthetic assessment via
multiple image joint learning. ACM Transactions on Multi-
media Computing, Communications and Applications, 2024.
8

[18] Nyeong-Ho Shin, Seon-Ho Lee, and Chang-Su Kim. Blind
image quality assessment based on geometric order learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12799–12808, 2024.
8

[19] Ombretta Strafforello, Gonzalo Muradas Odriozola, Fate-
meh Behrad, Li-Wei Chen, Anne-Sofie Maerten, Derya Soy-
daner, and Johan Wagemans. Backflip: The impact of local
and global data augmentations on artistic image aesthetic as-
sessment. Proceedings of the European Conference on Com-
puter Vision (ECCV) Workshops, 2024. 2

[20] Zhengzhong Tu, Peyman Milanfar, and Hossein Talebi.
Muller: Multilayer laplacian resizer for vision. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 6877–6887, 2023. 6

[21] Johan Wagemans, James H Elder, Michael Kubovy,
Stephen E Palmer, Mary A Peterson, Manish Singh, and
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Model Input size Charm #tokens ms GMACs MB

ViT-small 224 x 224 - 196 5.6 4.58 168.4

640 x 640
- 1600 23.6 58.11 1352.1
✓ 2-scale:512 7.1(↓ 69.9%) 13.49(↓ 76.8%) 328.3(↓ 75.7%)
✓ 3-scale:700 9.1(↓ 61.4%) 19.65(↓ 66.2%) 469.3(↓ 65.3%)

Table 17. ViT-small inference cost breakdown for processing one single image: number of tokens (#tokens) based on varying input sizes,
runtime in milliseconds (ms), Giga multiply accumulation (GMACs), and GPU memory in Megabytes (MB). Bold and underlined values
highlight the most and second-most computationally efficient configurations. Percentages indicate the reduction in computational cost
compared to processing the image in its original size.

p′ f PLCC SRCC ACC
28 0.5 0.767 0.754 0.767
42 0.66 0.732 0.725 0.774
56 0.75 0.739 0.729 0.749

Table 18. Performance of Dinov2-small + 2-scale Charm on
AADB dataset with different scaling factors. p′ and f represent
the initial patch size and the downscaling factor, respectively. The
patch size p is set to 14 to match the patch size of the Dinov2-small
patch encoding module. Increasing f negatively affects perfor-
mance due to increased information loss during the downscaling
of unselected regions.
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