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Supplementary Material

A. Additional information about the datasets

MVTec-AD [1]: The training set contains 3,629 images
with only anomaly-free samples. The test set consists of
1,725 images, comprising 467 normal samples and 1,258
abnormal ones. The anomalous samples exhibit diverse
defects, including surface imperfections (e.g., scratches,
dents), structural anomalies such as deformed object parts,
and defects characterized by missing object components.
Pixel-level annotations are provided for the anomaly local-
ization evaluation.

VisA [41]: Including 9,621 normal images and 1,200
anomaly images with 78 types of anomalies. The VisA
dataset comprises 12 subsets, each corresponding to a dis-
tinct object. 12 objects could be categorized into three ob-
ject types: Complex structure, Multiple instances, and Sin-
gle instance. The anomalous images exhibit a range of
flaws, including surface defects such as scratches, dents,
color spots, and cracks, as well as structural defects like
misalignments or missing components.

Additional datasets: In addition to the MVTec-AD and
Visa datasets, we have used two additional multi-class
anomaly detection datasets to evaluate the generalizability
of our model: the Metal Parts Defect Detection (MPDD
[11]) dataset and the Real-Industrial Anomaly Detection
(Real-IAD [29]) dataset. The MPDD dataset contains 1,346
multi-view images with pixel-precise defect annotations for
6 distinct industrial metal products. Real-IAD presents
a more challenging scenario, encompassing objects from
30 categories with a total of 150K high-resolution, multi-
view images, including 99,721 normal images and 51,329
anomalous images. The anomalies in Real-IAD span a
broad spectrum, including pits, deformations, abrasions,
scratches, damages, missing parts, foreign objects, and con-
tamination.

B. Detailed per-category results

Detailed image-level and pixel-level Mc-UAD anomaly de-
tection results for all categories of MVTec-AD of the pro-
posed method, as well as comparing methods are presented
in Tab. 3 and Tab. 4, respectively. Similarly, detailed per-
category results for the VisA dataset are presented in Tab. 5
and Tab. 6. These results highlight the effectiveness of our
approach, demonstrating its superiority over various state-
of-the-art (SoTA) methods across most of the object cate-
gories.

C. Quantitaive results on additional datasets

To further validate the effectiveness of the proposed method
on Mc-UAD we have conducted additional experiments on
new datasets, i.e. MPDD and Real-IAD. For the MPDD
dataset, as there are less data samples and categories we
have use Medium size model, and for Real-IAD dataset,
which includes a greater number of categories with higher
complexity, we utilized the X-Large model size. As de-
picted in Tab. 7°, the proposed DeCo-Diff demonstrates
superior performance, achieving improved results across
both image-level and pixel-level metrics for both additional
datasets.

D. Additional ablations
D.1. Architecture design of the model.

In this section, we investigate the impact of model size on
anomaly detection and localization performance. As men-
tioned before, we have employed a UNet with attention as
the backbone for our deviation correction model 77,. By de-
fault, we used a Large (L) configuration with 256 channels,
attention resolution of {4,2,1}, channel-multiplication fac-
tor of {1,2,4} across consecutive scales, dropout of 0.4, and
2 residual blocks. We also define model sizes XS, S, M, and
XL to have 64, 128, 192, and 320 channels respectively. As
indicated in Tab. 1, the larger model sizes usually yield bet-
ter image-level performance, while pixel-level performance
seems to be consistent for all model sizes greater than XS.

Table 1. Ablation studies on the impact of different model sizes.

Pixel-level
AUROC/AUPRC/f1 / AUPRO

Image-level

Model size |# params
AUROC/AUPRC/fl1

mask

98.6 /73.7/ 68.6 /93.5

mask

98.1 /99.3/ 97.9

UNet-XS 25M

UNet-S 99M 98.7 /99.5/ 98.3 |98.7 /75.8/ 70.5 /94.5
UNet-M 222M 98.8 /99.6/ 98.4 |98.6 /75.5/ 70.3 /94.7
UNet-L 395M 99.3 /99.8/ 98.5 |98.4 /74.9/ 69.7 /94.9

UNet-XL 614M 99.3 /99.7/ 98.7 |98.5 /75.5/ 70.2 /94.5

D.2. Impact of different hyper-parameters.

In this section, the impact of five different hyper-parameters
on the Mc-UAD performance of the proposed method has
been evaluated, and their results are depicted in Tab. 2.

Patch size: During each iteration of the training phase, a
patch-size is randomly selected to create a random mask and

3These results are either drawn from the original paper or papers refer-
enced to them



reshuffle the patches. We experimented with three different
sets of patch-sizes, each containing 3, 4, and 5 scales, where
the scales increase exponentially (powers of 2) starting from
a patch size of 1. As detailed in Appendix D, using a larger
set of patch sizes, leads to improved performance.
Masking ratio (7mas): In order to create a random mask for
each input image, the ratio of masking (7,,%) is sampled
uniformly from U[0, Ry.s]. As depicted in Tab. 2, we have
explored the effect of masking ratio, with three different
uniform ranges with the maximum masking ratio (R,,s)
set to 0.3, 0.5, and 0.7. The results indicated that when the
model is exposed to higher masking ratios during training, it
could better identify out-of-distribution regions, and there-
fore achieve better image-level and pixel-level performance.
Shuffled patches ratio: We have investigated the effect of
incorporating reshuffled patches within the batch as noise to
expose the model to more structured deviations. It should
be mentioned that this ratio, is the ratio of shuffled patches
to non-masked patches (specified by 7444 f1e), and not the
whole patches. As reflected in the Tab. 2, introducing
reshuffled patches as noise at a low ratio results in a slight
improvement in image-level metrics, albeit at the cost of a
decline in pixel-level metrics. On the other hand, replacing
a high portion of noise with shuffled patches could decrease
both image-level and pixel-level metrics.

vp and y;: 7, and y; are devised to prevent assigning exces-
sive weights to locations with large pixel-level and latent-
level deviations. We have assessed the impact of these
thresholds and the results are shown in Tab. 2. It is worth
mentioning that X in the table indicates no threshold or
scaling is applied to the deviations. As it can reasonably
be anticipated, the image-level metrics did not have much
variation. On the other hand, results indicate that applying
these thresholds could improve pixel-level metrics, where
vp = 0.4 and 7; = 0.2 yield the best results.

E. Additional Qualitative Results.

We have visualized additional qualitative results for
datasets, on 12 classes of MVTec-AD and VisA dataset, re-
spectively in Fig. | and Fig. 2 to further support the effec-
tiveness and superiority of the proposed DeCo-Diff model.
Also, we have depicted the results for MPDD and Real-IAD
datasets respectively in Fig. 3.

F. Limitations.

In this section, we further explore the limitations of the
proposed method, as well as analyzing the failures. For
this purpose, we have visualized the failures of the meth-
ods in Fig. 4, and categorized them into three different sub-
sets, i.e. “anomaly not detected”, “anomaly detected but
not fully recovered”, and “normal detected as anomaly”,
First of all, we have considered the anomalies in the latent

Table 2. Ablation studies on the impact of different hyper-
parameters. for each hyper-parameter, the best value is high-
lighted in bold. Also, the default setting for reported results in
the main context is marked with “*”.

Pixel-level
AUROC/ AUPRC/f1 ), / AUPRO

Hyper-parameter Image-level
value AUROC/ AUPRC/f1

mask

Patch Size set

[1, 2,4] 98.7 /99.5/ 98.0 |98.3 /74.2/ 69.2 /94.1
*[17 2,4, 8] 99.3 /99.8/ 98.5 |98.4 /74.9/ 69.7 /94.9
[1,2,4,8,16] 99.3/99.7/98.7 98.7 /75.6/ 70.2 /943

Masking Ratio
Ryask : 0.3 98.7 /99.5/ 98.3 |97.6 /72.4/ 68.0 /93.7
Runask = 0.5 99.1 /99.6/ 98.5 '98.4 /74.7/ 69.6 /94.7

* Ropask = 0.7 99.3 /99.8/ 98.5 |98.4 /74.9/ 69.7 /94.9

Shuffled Patches Ratio
R.v]mﬁ‘ie :0.0 99.1 /99.7/ 98.5 '98.6 /75.9/ 70.5 /94.8
*Rshuﬁ‘ie :0.3 99.3 /99.8/ 98.5 [98.4 /74.9/ 69.7 /94.9
Rslmﬁqe : 0.6 98.9 /99.6/ 98.1 [98.6 /75.6/ 70.3 /94.6

¥p and v

Yp 1 0.2-7:0.4 [99.1/99.7/ 985
Yp 1 0.4-7:0.2 [99.1/99.7/ 983
oy, 0 0.4-7,:0.4 |99.3 /99.8/ 98.5
Yp:0.4-7:0.6 |99.3/99.8/ 98.5
Yp:0.4-y: X |993/99.8/ 985
Yp 1 0.6-7 :0.4 [99.3/99.8/ 985
Yp: X - :04 (993 /99.8/ 985
Yoo XK-yi: X [993/99.8/ 98.5

98.4 /75.0/ 69.8 /94.8
98.4 /75.8/ 70.4 /94.9
98.4 /74.9/ 69.7 /194.9
98.4 /74.2/ 69.4 /194.4
98.4 /73.2/ 69.0 /93.9
98.4 /74.7/ 69.7 /194.4
98.4 /74.3/ 69.6 /93.7
98.3 /72.8/ 68.9 /93.5

space as noise, while it might be too optimistic. This limi-
tation becomes particularly pronounced when dealing with
very large anomalies, which could result in not detecting the
large displacements (as “Transistor: in the third column), or
not fully recovering the normal counterpart of the image (as
“bottle” in the sixth column). Exposing the model to more
structured anomalies like synthetic anomalies could serve
as a solution for this limitation. Also, as we have used VAE
to map the images into the latent space, very small anoma-
lies, like scratches that are barely visible, could be misin-
terpreted as the variation caused by variance of the VAE
model, and therefore not detected. The first, second, and,
fourth columns in Fig. 4, are failure examples due to this
limitation. Training a better VAE model that is sensitive to
these kinds of variations would probably improve the fail-
ures caused by this limitation. Furthermore, as DeCo-Diff
model corrects the deviation progressively upon a point that
the model considers them as in-distribution, in a few cases,
there might still be the footprints of the anomaly, as is the
case for the fifth, seventh, and eighth columns. This prob-
lem could be addressed by directly applying 2z in each re-
verse time-step as proposed in Sec. 5.3.2 of the main paper,
albeit at the cost of a slight decrease in image-level metrics.



Table 3. Image-level performance on MVTec-AD. Comparison to state-of-the-art methods on multi-class anomaly detection on the
MVTec-AD dataset. AUROC / AUPRC / Flmax are reported.

Category UniAD [33] SimpleNet [16] DeSTSeg [39] DIAD [8] MambaAD [7] MoEAD [17] GLAD [32] Deviation Correction
NeurIPS’22 CVPR’23 CVPR’23 AAAI'24 NeurIPS’24 ECCV24 ECCV24 Ours

Bottle 99.7 /100./ 100. | 100. /100./ 100. | 98.7 /99.6/96.8 | 99.7 /96.5/91.8 | 100./100./ 100. | 100./100./ 100. | 100. /100./ 100. 100. /100./ 100.
Cable 95.2/959/88.0 | 97.5/98.5/94.7 89.5/94.6/ 859 | 94.8/98.8/952 | 98.8/99.2/95.7 | 98.7/99.2/95.8 | 97.4/98.6/94.2 98.9 /99.3/ 95.6
Capsule 86.9 /97.8/94.4 | 90.7/97.9/935 | 82.8/959/92.6 | 89.0/97.5/95.5 | 94.4/98.7/94.9 | 93.7/98.5/96.4 | 96.6 /99.3/ 96.8 96.3/99.2/ 96.9
Hazelnut 99.8 /100./ 99.3 99.9 /99.9/ 99.3 98.8/99.2/98.6 | 99.5/99.7/97.3 100. /100./ 100. 100. /100./ 100. | 97.1 /98.4/ 94.5 99.6 /99.8/ 97.8
:Z); MetalNut | 99.2/99.9/99.5 | 96.9/99.3/96.1 | 92.9/98.4/922 | 99.1/96.0/91.6 | 99.9/100./99.5 | 99.8 /100./ 98.9 | 100. /100./ 99.5 99.7 /99.9/ 98.9
by Pill 93.7 /198.7/ 95.7 88.2/97.7/92.5 77.1/94.4/91.7 | 95.7/98.5/94.5 97.0 /99.5/ 96.2 | 94.5/98.9/95.6 | 95.5/99.2/95.0 99.6 /99.9/ 99.6
© Screw 87.5/96.5/ 89.0 | 76.7/90.6/ 87.7 | 69.9/88.4/85.4 | 90.7/99.7/97.9 | 94.7/97.9/94.0 | 92.8/97.4/91.4 | 94.9 /98.3/93.7 99.1/99.7/ 97.9
Toothbrush | 94.2 /97.4/95.2 89.7 /95.7/ 92.3 71.7 /189.3/ 84.5 99.7 /99.9/99.2 | 98.3/99.3/98.4 | 95.0/97.8/96.8 99.7 /99.9/ 98.4 100. /100./ 100.
Transistor | 99.8 /98.0/93.8 | 99.2/98.7/97.6 | 782/79.5/ 68.8 | 99.8/99.6/97.4 | 100./100./ 100. | 99.8 /99.7/97.5 | 99.7 /99.6/ 97.5 100. /100./ 100.
Zipper 95.8/99.5/ 97.1 99.0 /99.7/ 98.3 88.4/96.3/93.1 95.1/99.1/ 944 | 99.3/99.8/97.5 98.3/99.5/97.5 97.9 /99.4/ 96.3 99.8 /100./ 99.2
Carpet 99.8/99.9/99.4 | 95.7/98.7/93.2 | 959 /98.8/94.9 | 99.4/99.9/983 | 99.8/99.9/99.4 | 99.8/99.9/99.4 | 96.8/99.0/ 95.6 99.8 /99.9/ 98.9
3 Grid 98.2/99.5/97.3 97.6/99.2/96.4 | 97.9/99.2/96.6 | 98.5/99.8/97.7 100. /100./ 100. | 99.1/99.7/98.2 | 99.8 /99.9/ 99.1 100. /100./ 100.
é Leather 100. /100./ 100. | 100./100./ 100. | 99.2/99.8/98.9 | 99.8/99.7/97.6 | 100./100./ 100. | 100./100./ 100. | 99.1 /99.7/ 97.8 99.7 /99.9/ 98.9
& Tile 99.3/99.8/98.2 | 99.3/99.8/98.8 | 97.0/98.9/95.3 96.8/99.9/98.4 | 98.2/99.3/954 | 99.4/99.8/97.6 | 99.9 /100./ 99.4 99.1/99.7/ 97.6
Wood 98.6/99.6/ 96.6 | 98.4/99.5/96.7 | 99.9 /100./99.2 | 99.7 /100./ 100. | 98.8 /99.6/ 96.6 | 98.8/99.6/ 96.7 | 94.3 /98.2/ 93.6 97.3/99.1/95.9
Average 96.5/98.8/96.2 | 95.3/98.4/95.8 | 89.2/955/91.6 | 97.2/99.0/96.5 | 98.6/99.6/97.8 | 98.0/99.3/97.5 | 97.5/99.1/ 96.6 99.3 /99.8/ 98.5

Table 4. Pixel-level performance. Comparison to state-of-the-art methods on multi-class anomaly detection on the MVTec-AD dataset.
The following metrics are reported: AUROC / AUPRC / f1max / AUPRO. For each category, the best method (per metric) is highlighted
in blue, whereas red is used to denote the second-best method.

Category

UniAD [33]
NeurIPS22

SimpleNet [16]
CVPR'23

DeSTSeg [39]
CVPR’23

DiAD [8]
AAAT24

MambaAD [7]
NeurIPS'24

MOoEAD [17]
ECCV'24

GLAD [32]
ECCV'24

Deviation Correction

Ours

Bottle
Cable
Capsule
Hazelnut
MetalNut
Pill
Screw
Toothbrush
Transistor
Zipper

Objects

98.1 /66.0/ 69.2 /93.1
97.31/39.9/45.2 /186.1
98.5 /42.7/ 46.5 /92.1
98.1/55.2/ 56.8 /94.1
62.7/14.6/29.2 /81.8
95.0 /44.0/ 53.9 /95.3
98.3 /28.7/37.6 /95.2
98.4 /34.9/ 45.7 /87.9
97.9 /59.5/ 64.6 /93.5
96.8 /40.1/ 49.9 /92.6

97.2 /53.8/ 62.4 /89.0
96.7 1424/ 51.2 /185.4
98.5/35.4/ 44.3 /84.5
98.4 /44.6/ 51.4 /87.4
98.0 /83.1/79.4 /85.2
96.5 /72.41 67.7 181.9
96.5 /15.9/23.2 /84.0
98.4/46.9/ 52.5 /187.4
95.8 /58.2/ 56.0 /83.2
97.9 /53.4/ 54.6 190.7

93.3/61.7/ 56.0 /67.5
89.3 /37.5/ 40.5 /49.4
95.8 /47.9/ 48.9 /162.1
98.2 /65.8/ 61.6 /84.5
84.2/42.0/22.8 /53.0
96.2 /61.7/ 41.8 /27.9
93.8/19.9/25.3 /47.3
96.2 /52.9/ 58.8 /30.9
73.6 /38.4/39.2 /43.9
97.3/64.7/ 59.2 166.9

98.4 /52.2/ 54.8 /86.6
96.8 /50.1/ 57.8 /80.5
97.1/42.0/45.3 /87.2
98.3 /79.2/ 80.4 /91.5
97.3/30.0/ 38.3 /90.6
95.7 146.0/ 51.4 /89.0
97.9 160.6/ 59.6 /95.0
99.0 /78.7/ 72.8 /95.0
95.1/15.6/ 31.7 /90.0
96.2 /60.7/ 60.0 /91.6

98.8 /79.7/76.7 195.2
95.8 /42.2/ 48.1 /90.3
98.4 /43.9/ 47.7 192.6
99.0 /63.6/ 64.4 /95.7
96.7 /74.5/79.1 /193.7
97.4 /164.0/ 66.5 /95.7
99.5 /49.8/50.9 /97.1
99.0 /48.5/59.2 /91.7
96.5 /69.4/ 67.1 /87.0
98.4 /60.4/ 61.7 /94.3

98.0 /69.4/ 67.0 /93.6
97.7 156.8/ 49.1 /89.6
98.6 /48.4/ 44.1 /90.2
97.8 /154.4/ 52.3/92.3
94.8 /68.0/ 58.4 /88.5
95.8 /49.9/ 40.8 /95.1
98.8 /37.1/28.5/95.1
98.4/49.6/ 39.3 /87.7
97.6 /163.7/ 56.5 /93.9
97.7149.4/ 39.2 /93.0

98.3 /80.3/ 74.7 196.0
94.1 /5297 54.4 /189.4
99.1/49.8/ 52.2 /96.3
99.0 /71.2/ 66.7 /91.9
97.3/81.2/ 82.3 /94.2
97.8 /73.9/ 69.4 /94.7
99.6 /47.9/ 48.3 /96.6
99.2 /47.1/ 60.0 /96.0
89.5/55.9/ 56.6 /86.1
929 /41.7/ 47.1 /83.8

98.7 /86.5/ 79.0 /95.0
98.4 /77.8/ 71.1 /92.9
97.8 /56.5/ 55.9 /93.4
98.6 /75.9/ 68.3 /95.8
98.3 /89.0/ 84.9 /94.4
99.1/81.1/ 78.3 /96.9
99.8 /69.7/ 65.5 /98.4
99.4 /77.6/ 72.3 /95.5
92.4 /57.8/ 54.9 /187.4
99.5 /84.1/76.8 /97.9

Carpet
Grid
Leather
Tile
Wood

Textures

98.5/49.9/51.1 /94.4
63.1/10.7/ 11.9 /92.9
98.8 /32.9/ 34.4 /96.8
91.8 /42.1/50.6 /78.4
93.2/37.2/ 41.5 /86.7

97.4 138.7/ 43.2 /90.6
96.8 /20.5/ 27.6 /88.6
98.7 /28.5/ 32.9 /92.7
95.7 160.5/ 59.9 /90.6
91.4/39.7/ 34.8 /76.3

93.6 /59.9/ 58.9 /89.3
97.0 /42.1/ 46.9 /86.8
99.5 /71.5/ 66.5 /91.1
93.0 /71.0/ 66.2 /87.1
95.9/77.3/71.3 /83.4

98.6 /42.2/ 46.4 /190.6
96.6 /66.0/ 64.1 /94.0
98.8 /56.1/ 62.3 /91.3
924 /65.7/ 64.1 /90.7
93.3/43.3/43.5/97.5

99.2 /60.0/ 63.3 /96.7
99.2 /47.41 47.7 /197.0
99.4 /50.3/ 53.3 /98.7
93.8 /45.1/ 54.8 /80.0
94.4 /46.2/ 48.2 /91.2

98.2 /50.1/ 46.6 /94.0
97.4 /27.4/22.3 /91.7
98.6 /31.7/ 30.1 /96.7
91.6 /50.4/ 42.6 /78.8
92.8 /39.9/ 35.1 /85.1

98.8 /71.9/ 68.3 /95.0
99.4 /40.8/ 45.3 /97.6
99.7 /162.2/ 61.2 /97.0
97.9 /72.8/75.1 /96.6
96.8 /68.6/ 63.1 /86.7

99.3 /82.0/ 74.6 /97.2
99.5/63.9/ 61.0 /97.9
99.3 /58.8/ 58.7 /95.4
98.2 /86.4/76.5 /91.4
97.6 /75.9/ 68.4 /93.5

Average

96.8 /43.4/ 49.5 /90.7

96.9 /45.9/ 49.7 186.5

93.1/54.3/50.9 /64.8

96.8 /52.6/ 55.5 /90.7

97.7 /56.3/ 59.2 /93.1

96.9 /49.8/ 43.5 /91.0

97.4 /160.8/ 60.7 /93.0

98.4 /74.9/ 69.7 /194.9

Table 5. Image-level performance on VisA. Comparison to state-of-the-art methods on multi-class anomaly detection on the VisA dataset.
AUROC / AUPRC / flmax are reported.

Cat UniAD [33] SimpleNet [16] ~ DeSTSeg [39] DIAD [8] MambaAD [7] MoEAD [17] GLAD [32]  Deviation Correction
ategory NeurIPS’22 CVPR'23 CVPR’23 AAAI'24 NeurIPS'24 ECCV’24 ECCV'24 Ours
y PCBI 92.8 /92.7/87.8 | 91.6/91.9/86.0 | 87.6 /83.1/83.7 | 88.1/88.7/80.7 | 954 /93.0/91.6 | 97.7/97.3/ 95.2 | 78.1/79.8/ 740 | 96.7/95.9/ 94.6
2 PCB2 87.8 /87.7/83.1 | 92.4/933/84.5 | 86.5/85.8/82.6 | 91.4/91.4/84.7 | 942/93.7/89.3 | 95.1/95.6/90.1 | 83.0 /86.8/82.8 | 97.2/96.5/93.3
£ PCB3 78.6/78.6/76.1 | 89.1/91.1/82.6 | 93.7/95.1/87.0 | 86.2/87.6/ 77.6 | 93.7/94.1/86.7 | 92.2/92.6/85.2 | 95.9 /96.1/87.7 | 97.7/97.9/ 94.1
o PCB4 98.8 /98.8/ 94.3 | 97.0/97.0/93.5 | 97.8 /97.8/92.7 | 99.6 /99.5/ 97.0 | 99.9 /99.9/98.5 | 99.7 /99.7/ 97.0 | 99.3/99.1/97.5 | 98.5/97.3/94.6
,  Macaronil | 79.9/79.8/72.7 | 85.9 /82.5/73.1 | 76.6/69.0/71.0 | 85.7/852/ 78.8 | 91.6/89.8/ 81.6 | 93.0 /93.2/858 | 91.5/91.7/86.2 | 95.0 /954/88.4
&  Macaroni2 | 71.6/71.6/69.9 | 68.3/54.3/59.7 | 68.9/62.1/ 67.7 | 62.5/57.4/69.6 | 81.6/78.0/ 738 | 86.3/88.7/ 804 | 738 /712/ 718 | 88.4/90.2/ 80.4
S Capsules | 55.6/55.6/76.9 | 74.1/82.8/74.6 | 87.1/93.0/84.2 | 58.2/69.0/78.5 | 91.8/95.0/ 88.8 | 77.6 /87.8/79.7 | 92.4/95.9/88.0 | 95.8/97.7/91.2
= Candle 94.1 /94.0/ 86.1 | 84.1/73.3/76.6 | 94.9 /94.8/89.2 | 92.8 /92.0/ 87.6 | 96.8/96.9/90.1 | 97.2/97.3/ 92.8 | 88.1/88.8/ 81.8 | 95.6/95.5/88.1
Cashew 92.8 /92.8/91.4 | 88.0/91.3/84.7 | 92.0/96.1/88.1 | 91.5/95.7/89.7 | 94.5/97.3/91.1 | 90.7/953/89.2 | 96.6 /98.5/94.6 | 97.8/98.5/95.6
2 ChewingGum | 96.3/96.2/95.2 | 96.4/98.2/ 93.8 | 95.8 /98.3/ 947 | 99.1/99.5/95.9 | 97.7/98.9/ 942 | 98.9/99.6/ 98.5 | 99.3/99.7/ 97.0 | 97.6/98.7/93.3
& Fryum 83.0/83.0/ 85.0 | 88.4/93.0/83.3 | 92.1/96.1/89.5 | 89.8/95.0/87.2 | 95.2/97.7/90.5 | 90.8 /95.8/ 88.4 | 98.8 /99.4/ 96.6 | 99.3 /99.6/ 98.7
PipeFryum | 94.7 /94.7/93.9 | 90.8 /95.5/88.6 | 94.1 /97.1/91.9 | 96.2/98.1/93.7 | 98.7/99.3/97.0 | 96.7 /98.4/95.0 | 99.7/99.9/ 98.0 | 97.7 /98.6/ 94.5
Average | 85.5/85.5/84.4 | 87.2/87.0/81.8 | 88.9/89.0/85.2 | 86.8 /88.3/85.1 | 94.3/94.5/89.4 | 93.0/95.1/89.8 | 91.8/922/88.0 | 96.4 /96.8/ 92.2




Table 6. Pixel-level performance. Comparison to state-of-the-art methods on multi-class anomaly detection on the VisA dataset. The
following metrics are reported: AUROC / AUPRC / flmax / AUPRO. For each category, the best method (per metric) is highlighted in
blue, whereas red is used to denote the second-best method.

Cateeo UniAD [33] SimpleNet [16] DeSTSeg [39] DIAD [8] MambaAD [7] MOoEAD [17] GLAD [32] Deviation Correction
gory NeurIPS’22 CVPR’23 CVPR’23 AAAI'24 NeurlPS'24 ECCV'24 ECCV'24 Ours
>< PCBI1 93.3/3.9/ 8.3 /64.1 99.2 /86.1/78.8 /83.6 | 95.8 /46.4/49.0 /83.2 | 98.7 /49.6/ 52.8 /80.2 | 99.8 /77.1/72.4 /92.8 | 99.6 /64.1/ 68.2/92.0 | 97.5/38.1/45.9 /91.9 | 99.5 /66.0/ 69.8 /94.0
-% PCB2 93.9/4.2/9.2/66.9 96.6 /8.9/18.6 /857 | 97.3/14.6/28.2/79.9 | 952/7.5/16.7/67.0 | 98.9 /13.3/23.4/89.6 | 98.4/19.0/ 11.7/86.0 | 97.5/5.4/12.5/90.8 | 99.1/56.2/ 55.3 /90.8
g PCB3 97.3/13.8/21.9/70.6 | 97.2 /31.0/ 36.1 /85.1 | 97.7 /28.1/33.4 /62.4 | 96.7/8.0/ 18.8 /68.9 | 99.1 /18.3/27.4/89.1 | 98.9 /26.0/25.0 /84.3 | 97.0 /24.9/ 27.6 /95.3 | 98.7 /49.1/ 52.0 /90.1
o PCB4 94.9 /14.7/22.9 /723 | 93.9/23.9/32.9 /61.1 | 95.8 /53.0/ 53.2/76.9 | 97.0 /17.6/27.2/85.0 | 98.6 /47.0/ 46.9 /87.6 | 97.8 /34.9/29.4 /85.0 | 99.4 /52.2/ 53.2 /94.6 | 96.3 /46.5/ 44.2 /84.0
° Macaronil 97.4 737/ 9.7 /184.0 98.9 /3.5/ 8.4 /92.0 99.1/5.8/13.4/624 | 94.1/10.2/16.7 /68.5 | 99.5/17.5/27.6 /95.2 | 99.5/21.5/ 11.9 /96.5 | 99.9 /18.4/ 32.6 /99.2 | 99.6 /42.0/ 36.8 /96.3
& Macaroni2 95.2/0.9/4.3/76.6 93.2/0.6/39/71.8 98.5/6.3/ 14.4 /70.0 93.6/0.9/2.8 /73.1 99.5/9.2/16.1/96.2 | 98.5/14.6/ 6.6 /91.4 | 99.6 /5.7/12.2/98.0 | 98.6 /28.1/24.7 /96.2
= Capsules 88.7/3.0/7.4/43.7 | 97.1/52.9/53.3/73.7 | 96.9/33.2/9.1/76.7 | 97.3/10.0/21.0 /77.9 | 99.1 /61.3/ 59.8 /91.8 | 98.9 /58.4/ 59.4 /80.6 | 99.3 /48.4/52.0 /92.1 | 99.8 /70.9/ 71.0 /94.4
= Candle 98.5/17.6/27.9/91.6 | 97.6/8.4/16.5/87.6 | 98.7/39.9/45.8 /69.0 | 97.3 /12.8/22.8 /89.4 | 99.0 /23.2/ 32.4 /95.5 | 99.3 /34.8/25.7 /94.6 | 98.9 /26.5/ 34.2 /94.0 | 99.1 /37.0/ 36.3 /94.6
Cashew 98.6 /51.7/ 58.3 /87.9 | 98.9 /68.9/ 66.0 /84.1 | 87.9 /47.6/ 52.1 /66.3 | 90.9 /53.1/ 60.9 /61.8 | 94.3 /46.8/ 51.4 /87.8 | 98.2/50.3/45.9 /90.2 | 84.9 /24.1/34.3 /60.3 | 99.0 /54.6/ 57.0 /94.2
&, ChewingGum | 98.8 /54.9/56.1 /81.3 | 97.9 /26.8/29.8 /78.3 | 98.8 /86.9/ 81.0 /68.3 | 94.7 /11.9/25.8 /59.5 | 98.1 /57.5/59.9 /79.7 | 99.3 /59.6/ 59.3 /84.1 | 99.7 /78.5/ 73.1 /93.3 | 99.4 /73.3/79.9 /81.6
5 Fryum 95.9 /34.0/ 40.6 /76.2 | 93.0 /39.1/45.4 /85.1 | 88.1 /35.2/38.5/47.7 | 97.6 /58.6/ 60.1 /81.3 | 96.9 /47.8/ 51.9 /91.6 | 97.4 /53.0/ 44.9 /84.1 | 97.2/39.8/ 47.1 /96.6 | 93.9 /45.9/ 42.0 /92.5
PipeFryum 98.9 /50.2/ 57.7/91.5 | 98.5/65.6/ 63.4 /83.0 | 98.9 /78.8/72.7/45.9 | 99.4 /72.7/ 69.9 /89.9 | 99.1 /53.5/ 58.5/95.1 | 99.0 /55.3/ 51.3 /94.7 | 99.1 /53.8/ 59.1 /98.4 | 99.4 /46.0/ 45.0 /96.3
Average 95.9/21.0/27.0/75.6 | 96.8 /34.7/ 37.8 /81.4 | 96.1 /39.6/ 43.4 /67.4 | 96.0 /26.1/33.0 /75.2 | 98.5/39.4/ 44.0 /91.0 | 98.7 /36.6/ 41.0 /88.6 | 97.5 /34.6/ 40.3 /92.0 | 98.5 /51.3/ 51.2 /92.1
Cable Capsule MetalNut Pill Screw Toothbrush Transistor Zipper Carpet Grid Leather Tile
Figure 1. Additional qualitative results on MVTec-AD dataset. From top to bottom: the original input image (with anomalies), DeCo-

Diff reconstruction, the ground truth mask, and the predicted anomaly mask across different objects of MVTec-AD dataset.
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Figure 2. Additional qualitative results on VisA dataset. From top to bottom: the original input image (with anomalies), DeCo-Diff
reconstruction, the ground truth mask, and the predicted anomaly mask across different objects of VisA dataset.



Table 7. Quantitatve evaluation on additional datasets.. Image and Pixel-level results on MPDD and Real-IAD datasets in multi-class
UAD. The best method (per metric) is highlighted in blue, whereas red is used to denote the second-best approach.

Dataset Method Image-level Pixel-level
AUROC  AUPRC  flpmax AUROC  AUPRC  flpax  AUPRO
RDA4AD [3] cvrr22 90.3 92.8 90.5 98.3 39.6 40.6 95.2
UniAD [33] Neurtps’22 80.1 83.2 85.1 95.4 19.0 25.6 83.8
SimpleNet [16] cver23 90.6 94.1 89.7 97.1 33.6 35.7 90.0
DeSTSeg [39] cver23 92.6 91.8 92.8 90.8 30.6 329 78.3
MPDD [11] DiAD [8] aaar24 85.8 89.2 86.5 91.4 153 19.2 66.1
GLAD [32] Bccv4 97.5 97.1 96.8 98.0 40.9 41.5 93.0
MambaAD [7] Neurtps'24 89.2 93.1 90.3 97.7 335 38.6 92.8
DeCo-Diff (Ours) 97.7 97.3 95.3 95.1 45.3 46.6 79.5
RD4AD [3] cvere22 82.4 79.0 73.9 97.3 25.0 32.7 89.6
UniAD [33] Neurtps 22 83.0 80.9 74.3 97.3 21.1 29.2 86.7
SimpleNet [16] cver23 57.2 534 61.5 75.7 2.8 6.5 39.0
DeSTSeg [39] cver23 82.3 79.2 73.2 94.6 37.9 41.7 40.6
Real-IAD [29] | DiAD [8] aaarz24 75.6 66.4 69.9 88.0 29 7.1 58.1
MambaAD [7] Neurips24 86.3 84.6 77.0 98.5 33.0 38.7 90.5
DeCo-Diff (Ours) 87.0 86.1 79.2 97.4 46.4 48.6 88.8
MetalPlate _l:%lackBrakcl Tubes WhiteBracket AudioJack BottleCap Eraser Mounts PCB PhoneBattery SimCardSet Switch

Figure 3. Qualitative results on Additional datasets. From top to bottom: the original input image (with anomalies), DeCo-Diff recon-
struction, the ground truth mask, and the predicted anomaly mask for MPDD dataset (left side), and Real-IAD dataset(right side).

Anomaly not detected Anomaly detected, but not fully recovered

Normal misinterpreted as anomaly

Figure 4. Example of Failures on MVTec-AD and Visa datasets. Failures are categorized into three subsets, i.e. ”Anomaly not detected”,
”Anomaly detected but not fully recovered”, and “normal misinterpreted as an anomaly.” from right to left respectively. For each image,
from top to bottom: the original input image, DeCo-Diff reconstruction, the ground truth mask, and the predicted anomaly are depicted.
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