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Supplementary Material

A. Robustness Analysis

A.1. Error Bounds

This section provides detailed proofs for the theoretical guar-
antees mentioned in the main paper regarding our distance-
based representation’s error bounds compared to other equiv-
ariant features such as Vector Neurons.

In Vector Neurons, each layer performs transformation:

vout = R(Wvin) (1)

where R is a rotation matrix and W are learned weights. For
an input perturbation ϵ, the error after L layers propagates
as:

∥eL∥ ≤
L∏

i=1

∥Wi∥ · ∥Ri∥ · ∥ϵ∥ = O(αL) (2)

where α = maxi ∥Wi∥ · ∥Ri∥ > 1 typically.
For our distance-based representation, given points P and

anchor points A, a perturbation ϵ affects distances as:

|d(p+ ϵ, a)− d(p, a)| ≤ ∥ϵ∥ (3)

by the triangle inequality. This leads to our key result:

Theorem A.1 (Error Bounds) For input perturbation ϵ,
our distance matrix representation maintains constant error
bounds:

∥D(P + ϵ, A)−D(P,A)∥∞ ≤ ∥ϵ∥2 (4)

independent of network depth.

This theoretical advantage is empirically validated in Sec-
tion 4 of the main paper, where we demonstrate superior
robustness on real-world datasets that are based on Vec-
torNeurons.

A.2. Performance under Noise

To validate our theoretical error bounds empirically, we eval-
uate ESCAPE’s robustness by adding Gaussian noise with
varying standard deviations σ to input point clouds. As
shown in Table 1, our method maintains stable performance
under increasing noise levels (σ = 0.001 to 0.004), with
average CD-L1 scores only degrading from 10.58 to 10.99.

Table 1. Results of ESCAPE under input noise.

Category σ 0.0 0.001 0.002 0.004
Plane 8.60 8.66 8.83 8.71
Cabin 13.62 13.74 13.45 13.67
Car 10.43 10.46 10.47 10.76
Chair 10.71 10.72 10.68 11.08
Lamp 8.14 8.11 8.30 8.87
Sofa 13.86 14.00 14.05 14.73
Table 9.23 9.28 9.40 9.48
Boat 10.00 10.01 10.01 10.55
Avg 10.58 10.62 10.65 10.99

A.3. Different Level of Partiality
Similar to the noise experiment, here we exclude a random
portion of the input points, determined by a removal ratio of
p. The results of point removal are shown in Table 2. The
experiment demonstrate that our method is robust to input
perturbations, maintaining consistent performance across
varying conditions. The robustness of ESCAPE is further
illustrated in Figure 1. ESCAPE reliably handles input noise
and maintains output quality, even when large portions of
input points are removed.

Table 2. Results of removing portion of the input points.

Category p 0.0 0.1 0.25 0.5
Plane 8.60 8.49 8.32 8.92
Cabin 13.62 12.69 12.75 13.00
Car 10.43 10.39 10.81 10.41
Chair 10.71 11.43 11.21 11.36
Lamp 8.14 8.72 8.70 8.84
Sofa 13.86 13.74 13.80 13.97
Table 9.23 9.96 10.06 10.65
Boat 10.00 9.96 9.83 10.02
Avg 10.58 10.68 10.69 10.90

A.4. Visualization of KITTI Dataset
To further demonstrate robustness on real-world data, we
evaluate on the KITTI dataset using models pretrained on
PCN car shapes. Unlike controlled environments, KITTI
presents noisy, partial scans from actual LiDAR sensors
with unknown object orientations. As shown in Figure 2,
ESCAPE maintains consistent completion quality under var-
ious orientations, including single-axis rotations mimicking
vehicle movement and arbitrary three-axis rotations. This
validates our method’s practical applicability in real-world



Figure 1. Quantitative results of additive noise and point removal
experiments.

scenarios where clean, canonically-oriented inputs cannot
be guaranteed.

Input Snowflake Seedformer PoinTr Ours

In
pu

t
Ro

ta
tio

n 
ar

ou
nd

 
a 

si
ng

le
-a

xi
s

Ro
ta

tio
n 

ar
ou

nd
 

al
l a

xe
s

Figure 2. Qualitative comparison of models fine-tuned on PCN
dataset cars category and tested on KITTI dataset. The first row
contains the original input. The second row contains a single-axis
rotation of the input mimicking the movement of a car. The final
row contains the partial input rotated in all three axes.

B. Anchor Point Analysis
B.1. Deterministic FPS
In our method, we modified farthest point selection algorithm
to make it deterministic and obtain exactly same results for
the same input independent of rotation. To remove the ran-
domness of FPS, we changed the selection of the first point
by finding the point most distant from the center point cal-
culated as C = 1

|P |
∑

pi∈P pi. Selection of all other points
executed normally. With this modification, our method’s
performance stays constant even under input rotation.

B.2. Comparison with Learned Keypoints
ESCAPE’s modular design supports integration with any
set of keypoints generated by various algorithms. For com-
parison, we selected two self-supervised keypoint detection
methods: SNAKE [7] and SkeletonMerger [3] and bench-
marked them against our curvature-based keypoint selection
approach. We trained class-specific models to generate key-
points using SkeletonMerger and ensured the number of

keypoints matched those used in ESCAPE. Similarly, we
utilized its pre-trained weights for SNAKE and applied Far-
thest Point Sampling (FPS) to select a subset of predicted
keypoints, aligning their count with ESCAPE’s. The re-
sults are given in Table 3. The results demonstrated that
our anchor points outperformed learning-based counterparts,
achieving superior performance on rotated and canonical
input datasets.

Table 3. Results on PCN dataset with different set of keypoints. We
use CD-L1(×1000) as an evaluation metric and report the results
for normal and rotated inputs. Best results for both input type is
written with bold letters.

Category Keypoints Skeleton [3] SNAKE [7] Anchors
Airplane canonical 6.73 10.47 8.6

rotated 19.17 10.66 8.6
Cabin canonical 28.14 13.86 13.62

rotated 30.23 13.64 13.62
Car canonical 9.91 10.35 10.43

rotated 20.89 10.49 10.43
Chair canonical 9.98 10.57 10.71

rotated 19.64 10.80 10.71
Lamp canonical 8.02 8.67 8.14

rotated 11.51 9.08 8.14
Sofa canonical 12.74 14.65 13.86

rotated 26.15 14.79 13.86
Table canonical 8.19 9.54 9.23

rotated 21.24 9.38 9.23
Boat canonical 9.59 10.97 10.00

rotated 17.66 11.25 10.00
Avg canonical 11.67 11.14 10.58

rotated 20.82 11.27 10.58

B.3. Effect of Number of Anchor Points
We analyze how the number of anchor points affects recon-
struction quality during optimization. In this experiment, we
compare using different subsets (k = 3, 4, and 6) of anchor
points against our full set of 8 points, while maintaining the
predicted distances for each subset. The results in Table 4
demonstrate a clear trend: increasing the number of anchor
points improves reconstruction quality. With fewer anchor
points, the optimization becomes more sensitive to noise and
prediction errors, as there are fewer geometric constraints.
However, using too many anchor points increases model
complexity and computational overhead. Through extensive
experiments, we found that k = 8 provides the optimal bal-
ance between reconstruction accuracy and computational
efficiency.

C. Extended Comparisons
C.1. Performance on Canonical Inputs
While our method prioritizes rotation equivariance through
invariant features instead of point coordinates, this design
choice incurs a small performance trade-off on canonical



Table 4. Results of having different number of anchor points in the
optimization.

Category K 3 4 6 8
Airplane 10.21 9.98 8.68 8.6
Cabin 14.87 14.77 13.54 13.62
Car 12.54 12.50 10.84 10.43
Chair 13.13 13.37 11.10 10.71
Lamp 9.70 9.79 8.43 8.14
Sofa 16.19 16.32 14.28 13.86
Table 12.78 12.65 9.51 9.23
Boat 11.18 11.13 9.96 10.00
Avg 12.58 12.57 10.79 10.58

inputs. As shown in Table 5, existing methods achieve
slightly better CD-L1 scores on canonical inputs by exploit-
ing aligned data, but their performance degrades significantly
(up to 14x worse) under rotation. Notably, methods with
better canonical performance show more severe degradation
under rotation, suggesting dataset memorization rather than
true geometric understanding. This observation is further
validated by OmniObject results, where models with lower
PCN scores demonstrated better generalization to real-world
data. In contrast, ESCAPE maintains consistent performance
(10.58) regardless of orientation, demonstrating the value of
our rotation-invariant representation.

C.2. Baseline Comparison - PCA
To evaluate existing non-equivariant methods, we applied
PCA [1] to align the rotated point clouds, thereby normal-
izing the inputs before completion. After predicting the
complete geometry, we applied the inverse rotation to align
the completed shapes with the ground truth. The results
are given in Table6. Our method is the only model where
prediction is unaffected by the input rotation and achieves
rotation-equivariance.

C.3. Baseline Comparison - Augmentation
We have conducted additional experiments training the
baselines with comprehensive augmentations, including
random rotations (±180◦) and translations (±0.1) on all
axes. Below are the results showing how augmentation
affects the performance of baseline methods:

Table 7. Comparison of ESCAPE with the existing methods trained
with augmentation

Snowflake PoinTr AdaPoinTr AnchorFormer Ours
CD L1 43.60 47.0 31.25 47.27 10.58

Our method still maintains advantages in the CD L1 met-
ric. These results strengthen our contribution by demonstrat-

ing benefits even compared to augmentation-trained base-
lines.

D. Computational efficiency
We measured the average inference time of ESCAPE and
compared to against existing methods, as summarized in
Table 8. The results show that our method ranks second
fastest regarding the milliseconds required to predict a single
sample.

Our optimization step currently takes ~1.72 seconds per
shape, which is competitive with many post-processing steps
in 3D reconstruction pipelines. Additionally, hardware accel-
eration can significantly reduce this, making it more feasible
for real-world applications.

E. Analysis of Point Selection and Distribution
E.1. Visualization of point curvatures

Figure 3. Heatmap of the point curvature values and derived anchor
points.

Figure 3 illustrates the calculated curvature value for each
point in the input and derived refined anchor points using the
described algorithm in the main paper. The figure depicts
that our algorithm can select points with high curvature and
still cover all regions of the shape, hence good anchor points
for point cloud completion.

E.2. Analysis of Anchor Point Selection Strategies
Figure 4 provides a comprehensive comparison of different
anchor point selection strategies. Our analysis reveals that
initializing with Farthest Point Sampling (FPS) provides ef-
fective coverage by selecting well-distributed points across
the shape. While these points can be refined using curvature
information (as shown in Figure 3), we find that the refine-
ment process must be constrained. Without proper limits,
the refinement can cause anchor points to cluster (visible



Table 5. Results on PCN dataset. We use CD-L1(×1000) as an evaluation metric and report the results for canonical inputs versus rotated
frame. The best results for both input types are written with bold letters.

Snowflake [4] Seedformer [8] PointTr [5] AdaPoinTr [6] AnchorFormer [2] Ours
Canonical 7.21 6.74 8.38 6.53 6.59 10.58
Rotated 88.85 92.15 30.20 33.52 26.65 10.58

Table 6. Results on PCN dataset. We use CD-L1(×1000) as an evaluation metric and report the results for rotated inputs. The best results
are written with bold letters.

Snowflake[4] Seedformer[8] PointTr[5] AdaPoinTr[6] AnchorFormer[2] Ours
Plane 72.71 76.19 13.03 12.10 11.88 8.6
Cabin 85.81 85.99 47.97 50.35 32.93 13.62
Car 78.76 82.28 37.42 40.90 28.97 10.43
Chair 64.57 66.28 30.53 37.24 34.94 10.71
Lamp 141.04 148.67 19.01 19.77 17.73 8.14
Sofa 73.63 77.47 44.13 49.46 33.89 13.86
Table 87.31 89.58 29.03 37.74 36.57 9.23
Boat 106.97 110.72 20.51 20.60 16.26 10.00
Avg 88.85 92.15 30.20 33.52 26.65 10.58

Figure 4. Comparison of different anchor point selection algorithms.

Table 8. Inference time of a single input with existing methods.

Models Elapsed Time
Snowflake[4] 16.7 ms
Seedformer[8] 45.1 ms
PoinTr[5] 38.5 ms
AdaPoinTr[6] 35.6 ms
AnchorFormer[2] 21.8 ms
ESCAPE 19.3 ms

in top-right and bottom-left of Figure 4), reducing spatial
coverage and potentially leading to fewer effective anchor
points. Our proposed algorithm achieves an optimal balance
between salient anchors (high curvature) and spatial distribu-
tion, as demonstrated by the improved reconstruction results
in the bottom-right of Figure 4.

F. Limitations

While our approach demonstrates significant advantages in
achieving rotation-equivariant shape completion, it has lim-
itations. Firstly, although our method is less data-driven
than techniques that learn rotation through augmentation, it
still requires substantial training data to achieve high per-
formance. This dependency on data can be a bottleneck,
especially for applications where labeled data is scarce or
expensive to obtain.

Another key limitation of our approach is the optimization
procedure to find the coordinates of the complete shape. This
procedure prevents the model from being rotation-invariant,
which will limit its applicability to some real-world applica-
tions.

Furthermore, while distance-based encoding contributes
to rotation invariance, it also introduces additional complex-
ity to the learning process. This complexity can sometimes



result in lower performance on standard, non-rotated cases.
In scenarios where the objects are consistently presented in
a canonical alignment, methods that memorize these aligned
shapes may outperform our approach. The trade-off between
achieving rotation invariance and maintaining high perfor-
mance on canonical shapes is an essential consideration for
the practical deployment of our model.
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