
SphereUFormer: A U-Shaped Transformer for Spherical 360 Perception

Supplementary Material

A. Technical Details
In this section, we describe the implementation of our
method in detail.

A.1. Architecture
Given a group of nodes Gr of rank r on a sphere represen-
tation, an input data of rank r0 is projected by an “Input
Projection” layer, which is a fully connected layer map-
ping each node value to D1 = 32 dimensions, then fol-
lowed by GELU activation. In addition, an initial cen-
ter downsampling layer reduces the rank of the data to
r1 = r0 − 1. Global position encoding, which is explained
in Appendix A.3, of dimension D1 is added, forming the
final embedded data.

e0i = GELU(Projin(xi)),∀i ∈ Gr0 (1)

ē1 = POOL(e0) (2)

e1i = ē1i + Pos0(ϕi),∀i ∈ Gr1 (3)

The encoder consists of N = 4 consecutive spherical
attention modules (SAM). Each consists of M = 2 spher-
ical attention blocks (SAB). For each n ∈ [1..4], the em-
bedding dimension is Dn = 2i−1 · D1, resulting in 32,
64, 128, 256. At the end of each SAM is a downsampling
block, which consists of a center downsampling layer, fol-
lowed by a fully connected layer that projects the embed-
ding from Dn to Dn+1. The downsampling reduces the
sphere dimension from Gr0−n to Gr0−n−1. Therefore, for
all m,n ∈ [1..M]× [1..N]:

en,m = SABn,m(en,m−1) (4)

en+1 = Projn(POOL(en,M)) (5)

, where en,0 is en produced by the previous module.
As shown in Fig. 5 (in the main paper), each SAB is

composed of a spherical local self attention (SLSA) with
a residual connection, and an MLP that consists of 2 fully
connected layers with in/out dimensions Dn and hidden di-
mension 4 ·Dn, and a GELU activation.

h̄n,m = hn,m−1 + SLSAn,m(hn,m−1) (6)
hn,m = h̄n,m + MLPn,m(LayerNorm(h̄n,m)) (7)

As can be seen in Fig. 4. The bottleneck follows the
same structure as Eq. (4), operating on Gr0−N−1 with
DN+1 = 512, and without a downsampling layer. The de-
coder follows the same structure as the encoder, with the
slight modification that an upsampling with projection to

Dn is performed instead of downsampling, and that the en-
codings are merged with a bypass connection from the en-
coder with the same sphere rank. For the decoder:

dn,0 = UNPOOL(Projn(d
n+1)) (8)

dn,0 = CONCAT(dn,0, en,M) (9)

dn,m = SABn,m(dn,m−1) (10)

, where dn = dn,M . The concatenation also means that a
decoder stage has a dimension of 2Dn. Which is twice the
size of the encoder.

Finally, a fully connected “output projection” projects
the encoding d1 from 64 channels to 1 for depth, and the
number of classes in segmentation.

y = Projout(UNPOOL(d1)) (11)

A.2. Spherical Local Self Attention
The spherical local self attention (SLSA) Fig. 5 (in the main
paper) is an attention layer that adheres to the sphere struc-
ture. A local operation is performed between neighboring
nodes. A hyperparameter Cwin controls how far through
the graph neighbors are considered.

An input e with dimension D is projected into {q,k,v}
vectors. All have same the size, equal to Chead · D. They
are them split into H heads. Per stage, the encoder has
2,4,8,16 heads, the decoder has 4,8,16,16, and the bottle-
neck 16. Absolute position encoding is again added to q
and k and then the vectors are normalized. Based on the
graph structure G, for each ei, we denote EK

i as the set of
neighbors given Cwin = K. Then, for each node i ∈ G,
the dot product between the query qi and each key in its
neighborhood. Relative position bias is added to each dot
product result. A final softmax operation normalizes the at-
tention weights. This is applied per attention head, but for
conciseness, the head notation is not added.

āi,j = qi · kj + RelPos(i, j),∀i ∈ G,∀j ∈ EK
i (12)

{ai,1, ..ai,|EK
i |} = Softmax({āi,1, ..āi,|EK

i |}) (13)

The attention map is then multiplied by the value vectors
vj∀j ∈ EK

i to form the output of the head.

ōi = ai,j · vj ,∀i ∈ G,∀j ∈ EK
i (14)

Finally, the different heads are concatenated and a lin-
ear output projection projects the concatenated heads to the
input dimension.

oi = Proj(CONCAT({ōhi }Hh=1)) (15)

The encoder and decoder use 2,4,8,16 heads per equivalent
stage n ∈ [1..N].

A.3. Global Positional Encoding
Our method employs a vertical global positional encoding
to inform the model of each node’s vertical position on
the sphere. The vertical position is provided by the angle
ϕ ∈ [0, π], where 0 denotes the top point with z = 1 and π
denotes the bottom point with z = −1.

To encode the position. The angle value ϕ is encoded
with D sine and cosine wave functions of different frequen-
cies, resulting in a total of 2D position features. The fre-
quencies are sampled between Fmin = 1 (fixed) and Fmax

(configurable) by the function:

fi = F i/(D−1)
max , (16)

where i is a value between 0 and D − 1.
The position vector is then defined as:

ϕ̂ = (2ϕ− π)

pos(ϕ) = [sin(fiϕ̂)|D−1
i=0 , cos(fiϕ̂)|D−1

i=0]
(17)

We used D = 16, Fmax = 10. Fig. 9 illustrates the
global position encoding.

Figure 9. Visualizing the global position encoding per angle ϕ
from 0 to π.

As we apply global position encoding in our model in
different stages, we take the sinusoidal position encoding
and project them with a learned linear layer to the dimen-
sion of the target vector, which can vary based on the stage
within the architecture.

A.4. Relative Position Encoding
The relative position encoding has two steps. First, the rel-
ative angles (∆θ,∆ϕ) are computed for each pair of neigh-
boring nodes. Second, using the relative angles, a learned
value is sampled from a 7×7 grid.

For a graph representation G, with K-order neighbor
mapping EK

i for each node i ∈ G. The angles (∆θ,∆ϕ)
are computed between each node i and each node j ∈ EK

i .
This is done by rotating the nodes based on θi, ϕi, and ex-
tracting the new ∆θj ,∆ϕj after rotation. The rotated angles
are computed by converting the nodes’ positions to carte-
sian form (x, y, z), then multiplying by a rotation matrix,

and converting back to spherical form.

xj , yj , zj = ToCartesian(θj , ϕj) (18)

[x̂j , ŷj , ẑj]
T = Ri ∗ [xj , yj , zj]

T (19)
∆θj ,∆ϕj = ToSpherical(x̂j , ŷj , ẑj) (20)

The rotation matrix is defined by ϕi, θi as follows:

Ri = Rϕ
i ∗Rθ

i (21)

θ̂i = θ − π, ϕ̂i = ϕ− π

2
(22)

Rϕ
i =

 cos(−ϕ̂i) 0 sin(−ϕ̂i)
0 1 0

− sin(−ϕ̂i) 0 cos(−ϕ̂i)

 (23)

Rθ
i =

cos(−θ̂i) − sin(−θ̂i) 0

sin(−θ̂i) cos(−θ̂i) 0
0 0 1

 (24)

After the rotation, node i receives ∆θi = 0,∆ϕi = 0, while
the neighbors on the right and left receive positive and neg-
ative (respectively) ∆θj and above and below receive neg-
ative and positive (respectively) ∆ϕj . This computation
is performed only once in advance, as the structure of the
graph is fixed. After rotation, we use bilinear interpolation
to sample the value in a 7×7 grid according to ∆θj ,∆ϕj .
As was shown in Fig. 6 (in the main paper). Since the grid
is in the range [-1,1] on both axes, we normalize ∆θj ,∆ϕj

by the max absolute value of each angle coordinate over all
i ∈ G. The value is added as bias to the attention map.

B. Training Protocol
We trained each model for a similar amount of iterations.
For Stanford2D3D [1] we used 25K iteration. For Struc-
tured3D [3], which is a much larger dataset, we trained for
160K iterations. Each iteration has a batch size 16. The
models were trained with the Adam [2] optimizer, with a
learning rate of 1e-4. Evaluation on the validation set was
performed every 400 iterations, monitoring the best score.

B.1. Fast Resolution Upscaling
Since the model is composed of local operations. A
model can be finetuned for higher resolution with pretrained
weights trained on a lower resolution. As long as the hy-
perparameters of the network have not changed. We have
found this to significantly speed up training, and conver-
gence occurred in much fewer iterations. Since training
on high resolution is much slower per iteration, this is a
huge benefit. Fig. 10 shows the MRE throughout train-
ing on Stanford2D3D, for a rank 7 model, rank 8 model,
and rank 8 model pretrained on rank 7 weights. As can be
seen, when given enough iterations, rank 8 reaches rank 7’s
performance. But, a pretrained model on rank 7 converged
much faster and already surpassed its counterparts in less
than 5K iterations.

Figure 10. High resolution training comparison. Training a
model in rank 7 and rank 8 resolutions converge at the same
rate. However, fine-tuning a high resolution model on pretrained
weights of a lower resolution converges much faster.

C. Performance Analysis

In this section, we performed a deeper analysis of our
method’s performance.

C.1. Boundary Effect

In our analysis of the baselines, we observed a recurring
boundary effect at the points where the horizontal 360◦

and 0◦ meet. This boundary effect is most noticeable in
depth estimation where the estimated depth is not continu-
ous there. It can come as a misalignment between the two
sides of the image, or as a vertical line that passes through
the image. This boundary effect did not exist in our model,
since it is fully horizontally equivariant. This is illustrated
in Fig. 11, where we oriented the images to have the 0◦ at
the center. It can be seen that all baselines suffer from this
boundary issue to some extent, while our method does not.

C.2. Error Distribution on the Sphere

To better understand the strengths and weaknesses of each
method. We also analyzed the error per location on the
sphere. This is illustrated in Fig. 12, where we visualize
the average error of many depth predictions over the vali-
dation set, normalized by the max error of all models. The
visualization shows a low average error in red , and a high
one in blue. As can be seen, our method has less error at
the bottom and top (noticed by the darker red tone), due to
the better handling of the distortions, while also having less
error at the center (less bright spots), due to its higher effec-
tive resolution at the center. The higher effective resolution
is a result of distributing the data points uniformly on the
sphere, instead of the unbalanced sampling of ERP in favor
of the top and bottom of the image.

RGB PanoFormer EGFormer SFSS

Elite360D OURS GT

RGB PanoFormer EGFormer SFSS

Elite360D OURS GT

Figure 11. Boundary effect comparison. All baselines show a
boundary issue at the 0◦ horizontal angle.

Figure 12. MAE per location on the sphere. From top to bot-
tom: PanoFormer, EGFormer, Ours. From left to right: different
sides of the 360◦ view. Dark red values indicate low error, while
bright blue values indicate high error.

RGB Rank 7 Rank 8 GT

Figure 13. High resolution results. From left to right: RGB, Rank 7, Rank 8, GT. Results in rank 8 are sharper and visibly more accurate
in their depth estimation.

C.3. Qualitative High-Resolution Comparison

In Fig. 13, we show the depth estimation results of rank 7
and rank 8 models. As specified in Appendix B.1, the rank 8
model was finetuned on rank 7 pretrained weights. Beyond
the better quantitative performence shown in Tab. 5 (in the
main paper), these results show that the higher resolution
model produces a sharper and more accurate depth image.

References
[1] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio

Savarese. Joint 2d-3d-semantic data for indoor scene

understanding. arXiv preprint arXiv:1702.01105, 2017.
2, 1, 5

[2] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 2

[3] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua
Gao, and Zihan Zhou. Structured3d: A large photo-
realistic dataset for structured 3d modeling. In Proceed-
ings of The European Conference on Computer Vision
(ECCV), 2020. 2, 1, 5

