Not Only Text: Exploring Compositionality of Visual Representations
in Vision-Language Models

Supplementary Material

In this Supplementary Material, we provide additional de-
tails on Riemannian manifolds in Appendix A, we prove
the theoretical results our framework builds upon in Ap-
pendix B, we describe extra information of our implemen-
tation in Appendix C and we present further experimental
results in Appendix D.

A. Details on Riemannian Manifold

We discuss some details of the tools we used in our frame-
work to deal with the geometry of a data manifold M. In
the following, we focus on the spherical case M = S¢~1,
which applies to the case with normalized embeddings.

A.l. Closed form solutions

The exponential and logarithmic maps can be expressed in
closed form on the unit sphere S?~!. For any point of tan-
gency u € S, we have

\%

Exp,,(v) = cos(||v|[)u + Sin(HVH)W, veT,s
(13)
and
_ T _
Log’u(u) — 9 (Id M )(u Iu‘) uec Sd71 (14)
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where § = arccos(u'p) and I; € R*? is the identity
matrix.'

A.2. Intrinsic Mean

Existence, uniqueness, and characterization. The
(weighted) intrinsic mean p of a set of points {u;}¥ ;,
which is defined as the solution of a minimization prob-
lem, is not necessarily unique. For example, on S? all the
points on the equator minimize the average distance from
the north and south poles. But, existence and uniqueness are
guaranteed if the points live inside the same geodesic ball
Bo(r) := {u € M|dam(o,u) < r} of radius r > 0 small
enough [1]. Under the same condition, we also have that
1 is the unique point on M centerinl% the logarithmic map
of the input points, i.e. such that ) ;" , w; Log,,(u;) = 0.
We will refer to this property as the characterization of the
intrinsic mean. For the unit sphere S?%-1  the closeness as-
sumption is satisfied for any r < m/2. Note that we can

ITo be precise, the logarithmic map is defined on M \ C,,, where Cy,
is called the cut locus of p. We do not stress this detail because it is well
known that C;, has measure zero on M. On the unit sphere S9=1 the cut
locus of any point g is its antipode — .

Algorithm 1 Intrinsic mean
Input: uy,...,uy € M,wy,...,wy € An, g € M
Output: the intrinsic mean y € M

repeat N
Ou =1 =y wi Log,, (u;)
Hj+1 = EXp/Lj (5lt)

until ||6,]| < e

expect this condition to be verified by the normalized em-
beddings of a neural encoder because of the cone effect [5].

Computation by gradient descent. Computing the in-
trinsic mean o of a weighted set of points requires mini-
mizing the objective function

N
flu) = %Zwid/\/t(u7ui)2, uecM (15)
i=1

This can be done with a gradient descent algorithm [6]. In-
deed, it can be shown that (15) has gradient

N
Vf(u)=-— sz Log,(u;), ueM (16)
i=1

Algorithm 1 shows the pseudocode for the gradient descent
procedure. At each iteration, the new approximation fi; 1 is
obtained by first moving in the opposite direction of the gra-
dient and then mapping on the manifold with the exponen-
tial map centered in ;. The cycle stops when the norm of
the update is smaller than a fixed small value € > 0. Usually,
the starting value ;1o € M is chosen among the input points,
which live on the manifold. Otherwise, in the special case
M = S9! a good choice is the normalized (weighted)
arithmetic mean pg = vazl w; w; /|| Zf\il w; w;|. The
learning rate 7 has to be carefully chosen to guarantee con-
vergence. It has been shown that setting n = 1 is sufficient
for spheres [2].

B. Proofs

We provide the proof of the theoretical results stated in the
methodology chapter. We omit the proof of Proposition 1
because it is the same of the more general Proposition 2
in the special case when || = 1. In the following, we
assume that a given composite concept z € Z is the tuple
z=1(21,...,2s)-



Lemma 1. Let ¢(Z) be a geodesically decomposable set.
Then there exist unique vectors v, € T,M forall z; € Z;

suchthat ), o v., =0foralli=1,...,sand

Vz=(21,...,25) (17)

Proof. Let ¢(Z) ={u,} be a geodesically decomposable
set with tangent projections v.=Log,, (u.) decomposed as
V.=V, +---+v. . Indicating vz, = ﬁ Ysiez, Vi, We
now show that the searched directions are v, = v, — vz,
(i = 1,...,s). The centering constrain Zziezi v, =0
immediately follows from the definition. Then, we observe
that Y. vz, = ﬁ > .cz Ve = 0 for the characterization

of the intrinsic mean. This implies Eq. (17) is satisfied:

u, = Expu(vz1 +o vy

V.=V, +- -+ V.,
=z, + V)tV otV (18)
:v21+...+vzs

To show uniqueness, we demonstrate the v, are uniquely
determined by the original vectors v ,:
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Proposition 2. Let p. ), (z,e) € Z x &, be non-negative
scalars such that ZEES D(z,e) = L foreach z € Z, and let
H(ZxE) ={ug,e|(z,e) € ZxE} C M beaset of em-
beddings with weighted intrinsic mean p w.r.t. the weights
Wize) = P(z,e)/ Z(Z,e) P(z,e)- The minimization problem:

arg}nin Z p(z,e)” Logy(u(z,e)) - Log#(ﬁz)Hz,
{a:} (z,)€ZXE
s.t. {0} is geodesically decomposable
(20)

is solved by 0, = Exp,,(v;, + -+ v,,), where

1
Ve = Z( 2 Z Vz, V= Zp(z,e) Log#(u(z,e))
|2 (z0)] 2€Z(2) ec€
ey
Moreover, 3 - V., =0foralli=1,...,s.

Proof. We start by observing that, if {11, } is a geodesically
decomposable set with intrinsic mean p’, then, following
the proof of Lemma 1, we can write its tangent projection
vV, = Logu(ﬁz) € T, Masv, =vo+v; + - -+V,, where

Y ez, Ve, = 0and vg = Y, Vz, = %sz/z Note
that ¢/ = p if and only if v = 0. Now, in the setting of the
statement, we indicate v, ) = Log, (u(..)) and rephrase
the objective in Eq. (20) as finding the vectors vq, v,, €
T M,z € Z; (i=1,...,s) minimizing

1
2 Z p(z,e)Hv(Le) —(Vot+vs +o + st)||2 (22)
(z,e)

€EZXE

Observing that ) - v., =), % Y ez, Ve =0, the
derivative of (22) with respect to v is

Z Zp(z7e) (V(Z7E) - (VO TV e+ VZS))

z€Z ec&

= Z(Vz - Vo),

zEZ

(23)

where v, = ) o P(z,e)V(z,e) Setting this equal to zero
: 1

gives vo = 13 > V.= Z(z,e) W(z,e)V(z,e) = 0. Here the

last equality follows from the characterization of the intrin-

sic mean and it implies the intrinsic mean of the solution is

1. The derivative with respect to a fixed v, is:

Z Zp(z,e)(v(z,e) - (Vzl +oeet st))

2€Z(z;) e€E

= Z (VZ 7VZ7L)

z€Z(z;)

(24)

Setting this equal to zero gives v, = ﬁ Y oeez(a) VE.]

Lemma 2. Using the notation of Proposition 2, the set
{u, := Expu(vz)}zeg has intrinsic mean [u.

Proof. As observed in the proof of Proposition 2, we have
|—i,| >, V. = 0, implying the weighted mean . is the in-
trinsic mean of {u, },cz. O

C. Experimental Details
C.1. Closeness assumption

We numerically verify the closeness assumption, discussed
in Appendix A.2, which guarantees the existence and
uniqueness of the intrinsic mean. Given a set of points
on S9!, a good guess for the center 0 € M of a small
geodesic ball B,(r) containing them is their normalized
arithmetic mean pg. So, for all the sets of embeddings used
in our experiments, we verify their maximum intrinsic dis-
tance (i.e. angle) from pp is smaller than 7/2. In Tab. 4
we show some statistics of the distances computed with the
embeddings from the default model CLIP ViT-L\ 14 used in
the experiments.



Image Embeddings Text Embeddings

avg max 7 <7/2 avg max r<7/2
UT-ZAappos 049 1.0 v 0.56 0.75 v
MIT-STATES 0.78 1.4 v 0.67 1.14 v
WATERBIRDS  0.63  1.03 v 041 048 v
CELEBA 075 1.15 v 04 043 v

Table 4. Statististics of distances from embeddings to their nor-
malized arithmetic mean. The closeness assumption is verified if
all the embeddings are within a radius r < w/2 ~ 1.57.

C.2. Noise distribution

Temperature selection. When performing compositional
classification and group robustness, we use the image-to-
text distribution P((z, e)|y(z)) defined by the VLM as the
noise distribution. For CLIP, this is given by the softmax ac-
tivations described in the main paper and it depends on the
temperature parameter ¢ € (0, 4o00). For each dataset, we
select the value for ¢ by performing a grid search on the val-
idation set. We optimize the AUC metric for compositional
classification and the WG accuracy for group robustness.

SigLIP sigmoid probabilities. Differently from the orig-
inal CLIP, SigLIP uses a sigmoid-based loss processing ev-
ery image-text pair independently and it defines the pair-
specific probabilities

1
1+ exp(—u/, ,uy()/t —b)

P((z,€)ly(2)) (25)

When considering SigLIP embeddings, we use the noise
distribution p(; . oc P((z, e)|y(2)) proportional to the pair-
specific sigmoid probabilities. We select the temperature
parameter ¢ as described for the CLIP model while keeping
the logit bias b € R equal to the learned value (b ~ —16.5).

C.3. Text prompts

For the UT-Zappos and MIT-states datasets, we consider the
same text prompts used in [8]. Attribute-object pair (a, o)
is described by y(a,0) = “animage of a {a} {o}” where
{a}, {o} are the lower-case original category names. For
UT-Zappos, every dot character is substituted with a space
(“Synthetic Boots.Ankle” — “synthetic boots ankle”). We
use these prompts both when decomposing text embeddings
and when computing the image-to-text probabilities defin-
ing the noise distribution.

For the Waterbirds and CelebA datasets, we consider the
text prompts defined in [3, 8]. These are obtained by rep-
resenting each spurious attribute and each target class with
the captions in Tabs. 5 and 6. Then, prepending the spuri-
ous prompts to the class prompts produces k = 4 and k = 3
textual descriptions for each composite group in the Water-
birds and CelebA datasets, respectively. We compute the
image-to-text probabilities for the noise distribution using

Class prompt
This is a picture of a landbird.
This is a picture of a waterbird.

Spurious attribute prompt
This is a land background. This is a water background.
This is a picture of a forest. This is a picture of a beach.
This is a picture of a moutain. This is a picture of an ocean.
This is a picture of a wood. This is a picture of a port.

Table 5. The text prompts from [3] for the Waterbirds dataset.

Class prompt
A photo of a celebrity with dark hair.
A photo of a celebrity with blond hair.

Spurious attribute prompt
A photo of a male. A photo of a female.
A photo of a male celebrity. A photo of a female celebrity.
A photo of a man. A photo of a woman.

Table 6. The text prompts from [3] for the CelebA dataset.

DATASET METHOD ATTR OBJ SEEN UNSEEN HM AUC P
CLIP [7] 24.1 583 119 45.7 153 44 -
UT-ZAPPOS GDE, (IMAGE) 36.2 63.8 309 55.6 29.0 136 310.8%

GDE (IMAGE) 363 641 314 55.9 293 139 3179 %

CLIP [7] 33.0 521 306 45.3 263 111 -
MIT-STATES  GDE, (IMAGE) 27.7 443 304 35.0 229 82 74.3 %
GDE (IMAGE) 281 453 307 36.1 234 8.6 71.7 %

Table 7. Results of ablating the use of CLIP scores as the noise
distribution in compositional classification, closed-world scenario.

the decomposable text embeddings 0.y, 2 € Z, given by
Proposition 2 applied to the input embeddings. Note indeed
that they can be written as {u,(. . | (z,e) € Z x £}, where
£ is a “prompt template” dimension.

D. Additional Results
D.1. Ablation: noise distribution

Our decomposition method (GDE) computes the noise dis-
tribution using CLIP scores with a custom temperature pa-
rameter. In Tab. 7, we compare GDE against the decom-
position obtained when using a uniform noise distribution
(GDE,) in the task of compositional classification. While
the simpler GDE,, performs well compared to the zero-
shot baseline, leveraging the non-uniform noise distribution
from the CLIP scores always improves performance.

D.2. Decomposing hyperbolic representations

We investigate the compositional properties of visual rep-
resentations on different geometries than the CLIP’s hyper
sphere. Specifically, we perform compositional classifica-
tion of the pre-trained MERU ViT-L-16 [4] embeddings,



DATASET ~ METHOD ATTR OBJ SEEN UNSEEN HM AUC P

MERU [68] 174 267 11.1 16.0 9.6 1.4 -
UT-ZAPPOS  LDE (IMAGE) 13.8 407 4.6 21.8 5.1 0.7 52.7 %
GDE (IMAGE) 229 49.7 152 40.3 16.0 47 3404 %

MERU [68] 17.7 344 15.8 27.0 13.2 3.1 -
MIT-STATES LDE (IMAGE) 13.7 267 112 19.1 9.1 14 46.1 %
GDE (IMAGE) 189 342 185 253 137 33 107.0 %

Table 8. Compositional classification results of MERU’s hyper-
bolic representations, closed-world scenario.

which are points on the Lorentz model:
£ = {u e R (u,u), = —1/c}. (26)

Here (-, ). is the Lorentzian inner product and the param-
eter ¢ > 0 is learned during pre-training. The exponen-
tial and logarithmic maps have a closed form solution for
the hyperboloid £? [4], enabling a simple application of
the GDE framework also in this setting. Results in Tab. 8
show that, as observed for CLIP spherical embeddings, the
GDEs of MERU'’s hyperbolic representations contain se-
mantically meaningful information of the concepts they rep-
resent. Moreover, the significantly lower performance of
LDE highlights the importance of GDE’s geometry aware-
ness also in this non-spherical setup.

D.3. Runtime

A potential limitation of our proposed framework is the ad-
ditional computational costs it requires for mapping embed-
dings to and from the tangent space. We now analyze the
inference time of the decomposition procedure.

Suppose we compute a decomposable set for M = |Z]|
composite concepts using N = |7 | visual embeddings on
the sphere S*' C R?. Compared to LDE, GDE addi-
tionally computes Log,, for the N inputs and Exp,, for the
M tangent compositions. The computational complexity of
these operations is O(Nd) and O(Md), respectively. Note
that the orthogonal projection in Eq. (14) can be rewritten
as (Ig — up")w = w — (u"w)u, avoiding the explicit
computation of the d x d matrix. Calculating p with Algo-
rithm 1 is O(Nd) per gradient step, keeping the extra com-
pute linear in N, M, d. Tab. 9 reports the runtimes for GDE,
LDE, y, Log,,, Exp,, in our experiments (tolerance for /. is
€=1075). Both methods are fast on the relatively small
datasets used for our analysis. GDE is significantly slower
than LDE, with most of its extra runtime being spent on
the computation of x. However, we argue that approximat-
ing p with a smaller subset of N < N input embeddings
could be sufficient and drastically improve efficiency when
the number of inputs is large.

D.4. Generated images
In Fig. 7 we show extra images generated using StabeDif-

fusion with the unCLIP module to invert composite embed-
dings. We include attribute-object pairs from all the datasets

Dataset N M LDE GDE I steps [ Log,, Exp,

UT-ZAPPOS 22998 192 4l£lIms 382+9ms 267+15ms 3 83+4ms 0+£0ms
MIT-STATES 30338 28175 149+0ms 850+8 ms 560+15 ms 5 10644 ms 60+1 ms
WATERBIRDS 4795 4 7+0ms  59+14ms  43+12ms 4 11+2ms  0£0ms
CELEBA 162770 4 375+4ms 3812+£35ms 2902+£37ms 5 557+14ms 0£0ms

Table 9. Runtimes on a Titan Xp GPU, averaged over 5 runs.

used in our experiments. Similarly to the animal-animal
pairs shown in the main document, we identify other high-
level categories within the MIT-states objects (items, envi-
ronments and materials) and visualize animal-environment
and item-material compositions.

Also, we observe that the modularity of the composi-
tions allows to gain finer control on the composite em-
beddings. In Fig. 8, we invert embeddings of the form
Exp,,(av,+V,), where the attribute direction is scaled by a
scalar a € R. In the generated images, changing the value
of a modifies the intensity of the attribute that results in
a lower or strong appearance of it in the generated images.
This experiment further demonstrates that the primitive vec-
tors resulting from solving the proposed optimization prob-
lem are interpretable directions of the latent space.

Our initial goal of the generative experiments was to
qualitative inspect the GDE compositions. However, the
good quality of the results suggests that our framework
could be useful for augmenting compositional datasets. To
support this, we compute the average CLIP-score of 500
outputs (five generations of 100 random unseen concepts),
to assess how a CLIP model perceives composite concepts
in generated images. As a baseline, we consider the default
text-to-image (T2I) version of the generative model.

UT-ZAPPOS
GDE: 0.68+0.06 T2I: 0.62+0.10

MIT-STATES
GDE: 0.58+0.08 T2I: 0.55+0.10

Table 10. Average CLIP-score of SD generated images.

D.5. Failure cases

We investigate failure cases in Stable Diffusion visualiza-
tions and noted that the decomposable embeddings may
encode spurious correlations of the input data or produce
ambiguous compositions. For instance, the generated im-
ages in Fig. 6 suggest that the ’inflated’ and ’boat’ primi-
tive directions are respectively linked to ‘round object’ and
water’, and the tiger’+ horse’ and ’dog’+’ forest” compo-
sitions are respectively close to “zebra’ and "bear’.

inflated + pool boat + desert

tiger + horse  dog + forest
re B | R

Figure 6. Failure instances in SD generations.



a: faux leather a: nubuck a: patent leather a: hair calf a: folded a: mossy a: engraved a: rusty
o: shoes loafers o: boots ankle

: boots knee high o: shoes heels o: clothes o: roots o: metal o: bucket

a: land a: land a: water a: water a: female
o: landbird o: waterbird : landbird o: waterbird o: blonde

: horse o1: horse
: forest

AL

o1: cat o1: cat o1: horse

o1: cat
0g: forest og2: kitchen og: bathroom

og: bathroom

o1: bracelet o1: bracelet o1: bracelet

01: armor
og: bronze og: steel : wood

o02: bronze

Figure 7. Additional generated images obtained by inverting the decomposable embeddings computed with GDE, using StableDiffusion
with the unCLIP technique. We include attribute-object pairs from the UT-Zappos and MIT-states datasets (first row), and from the
Waterbirds and CelebA datasets (second row). Similarly to the animal-animal pairs shown in the main document, we visualize animal-
environment pairs (third row) and item-material pairs (fourth row) from the MIT-states objects.

a: axX burnt
0: pizza

a: ax faux fur
o: boots mid-calf

Figure 8. Scaling attribute direction in attribute-object compositions.
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