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A. Broader Impact

Our method significantly increases the throughput of ViTs,
making it well suited for applications that require real-
time inference, such as autonomous driving, robotics, and
computer-assisted medical interventions. Our approach
could also be used to accelerate high-capacity models, po-
tentially enabling new applications that require both high
performance and low latency. Edge devices such as smart-
phones could benefit from decreased computation to im-
prove battery life. Since inference is performed repeatedly
and often represents a greater cumulative cost than training,
our method offers a broader potential contribution to sus-
tainability by reducing carbon emissions.

That said, it is important to acknowledge that our method
could also be misused to accelerate models for harmful ap-
plications, particularly due to the versatility of Cropr across
various vision tasks. We neither explore such applications
in this paper nor intend to pursue them in future work.

Moreover, we have not evaluated our method for equita-
ble performance across demographic groups. Just as mod-
els can have biases against certain groups, these biases can
propagate to token scoring and selection. Addressing these
fairness and inclusivity concerns is critical before using to-
ken pruning methods in real-world applications. In addi-
tion, a thorough error analysis should be conducted to iden-
tify discrepancies between the pruned and unpruned mod-
els, ensuring robust and reliable performance.

B. Limitations

Limited hardware: Across experiments, we report 1.5
– 4× speedups of our method over unpruned baselines,
as measured on A100 NVIDIA GPUs. However, runtime
gains may vary on other hardware accelerators. We use
gather operations for token selection and concatenation,
whose performance is hardware dependent.

Gap to the no-pruning baseline: While Cropr signifi-
cantly reduces computation, it does not fully close the per-
formance gap with unpruned baselines. This is particularly
noticeable in smaller ViTs, schedules with high TPRs, and
low-resolution images (App. D).

Pruning schedule design: The manuscript, and this sup-
plementary in App. E, explore a variety of pruning sched-
ules, which required manual design and task- and model-
specific adaptations. In contrast, automated schedules, con-
ditioned on user-defined constraints like target performance
and throughput, would likely be more user-friendly.

Quite a few tasks but not all: We have evaluated Cropr
solely on vision tasks. As discussed in the main text, Cropr
could be extended to other modalities. Furthermore, as the
title suggests we address quite a few tasks, but not all of
them. While tasks such as fine-grained recognition are a
trivial application of Cropr, other tasks such as visual ques-
tion answering and image retrieval require follow-up work.

Fine-tuning requirement: Cropr requires training to
adapt router and auxiliary head weights. In contrast, recent
works explore post-hoc token reduction without fine-tuning.
While appealing, note that these methods still achieve their
best performance with fine-tuning. For example, ToMe [3],
evaluated on ImageNet-1k with ViT-L MAE and R = 8,
achieves 85.1% with fine-tuning compared to 83.9% with-
out. ToFu [13] reaches 84.7% without fine-tuning, less than
our 85.1%. We also reproduced GTP-ViT [21] with above
setup and observed an accuracy of only 72.7% without fine-
tuning; a lower pruning rate of R = 4 is required to recover
performance to 84.7%. Performance gains from fine-tuning
are consistent across methods, particularly at higher prun-
ing rates, as shown in Table 2 of [21]. Furthermore, since
fine-tuning from a pretrained checkpoint is still common in
practice, our method in these cases requires no additional
steps. It remains an open problem to supersede fine-tuning
without sacrificing performance.

C. Hyperparameters
In Tabs. 1 to 4, we list hyperparameters for the datasets
and models we use in our experiments. These settings are
adopted from Fang et al. [8], He et al. [10], Strudel et al.
[17]. Hyperparameter and design choices specific to Cropr
are described in the main text.

D. Different image resolutions
We investigate the effect of image size on the performance
and throughput of Cropr models. We apply Cropr with LLF
to an MAE-pretrained ViT-L on ImageNet-1k at resolutions
of 224, 336, and 448 pixels per side. The pruning rate R
scales with image size to 8, 18, and 32 tokens per block,
respectively, maintaining a TPR of 90% across all settings.

Figure 1 shows that Cropr’s relative performance penalty
decreases at higher resolutions, improving from −0.5 to
−0.06, effectively closing the gap to the unpruned model.
Furthermore, throughput gains are elevated at higher resolu-
tions, going from a speedup of 1.7× at 2242 px to a speedup
of 2.1× at 4482 px. This is perhaps due to the quadratic
relationship between sequence length and compute in trans-
former models.



Config Value
checkpoint MAE-pretrained [10]
learning rate 4e-3
layer-wise lr decay [1, 5] 0.65 (B), 0.75 (L, H)
learning rate schedule cosine decay [14]
optimizer AdamW [15]
optimizer hparams β1, β2, ϵ = 0.9, 0.999, 1e-8
weight decay 0.05
input size per side 224, 336 or 448
patch size 16 (B, L), 14 (H)
batch size 1024
epochs 100 (B), 50 (L/H)
warm-up epochs 5
label smoothing [18] 0.1
drop path [11] 0.1 (B), 0.2 (L), 0.3 (H)
augmentation RandAug(9, 0.5) [6]
random resized crop (0.08, 1)
cutmix [22] 1.0
mixup [23] 0.8
CLS token ✓

Table 1. ImageNet-1k image classification hyperparameters for
MAE-pretrained encoders.

Config Value
checkpoint IN-21K fine-tuned EVA-02-L [8]
learning rate 2e-5
layer-wise lr decay [1, 5] 0.85
learning rate schedule cosine decay [14]
optimizer AdamW [15]
optimizer hparams β1, β2, ϵ = 0.9, 0.999, 1e-8
weight decay 0.05
input size per side 448
patch size 14
batch size 512
epochs 20
warm-up epochs 2
label smoothing [18] 0.2
drop path [11] 0.15
augmentation RandAug(9, 0.5) [6]
random resized crop (0.08, 1)
cutmix [22] ✗

mixup [23] ✗

CLS token ✓

Table 2. ImageNet-1k image classification hyperparameters for
EVA-02-pretrained encoders.

Config Value
checkpoint MIM pretrained EVA-02-L [8]
learning rate 2e-5
layer-wise lr decay [1, 5] 0.9
learning rate schedule polynomial decay [4]
optimizer AdamW [15]
optimizer hparams β1, β2, ϵ = 0.9, 0.999, 1e-8
weight decay 0.05
input size per side 512
patch size 16
batch size 8
epochs 64
warm-up epochs 0
drop path [11] 0.2
CLS token ✓

Table 3. ADE20k semantic segmentation hyperparameters.

Config Value

checkpoint
Objects365 fine-tuned
EVA-02 [8]

learning rate 4e-5
layer-wise lr decay [1, 5] 0.8
learning rate schedule constant
optimizer AdamW [15]
optimizer hparams β1, β2, ϵ = 0.9, 0.999, 1e-8
weight decay 0.1
input size per side 1536
patch size 16
batch size 64
training steps 40k
drop path [11] 0.3
large-scale jittering [9] ✓

attention window size 16
global attn block ids 3, 6, 9, 12, 15, 18, 21, 24
max numbers of detection 100
softNMS [2] IoU threshold = 0.6
maskness scoring [12, 20] maskness threshold = 0.5
EMA decay [16] 0.999
CLS token ✗

Table 4. COCO object detection and instance segmentation hy-
perparameters.
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Figure 1. Performance-throughput trade-off plot for different im-
age sizes on ImageNet-1K. Token pruning in higher-resolution im-
ages provides more speedup and less performance drop.

E. Throughput ablations
In this section, we evaluate different pruning rates R, in-
vestigate the effect of keep token sequence lengths on run-
time, and compare different numerical precision modes and
FlashAttention [7]. ViT-L is employed for all ablations.

Different pruning rates. We ablate the pruning rate R
in our image classification setting, fine-tuning an MAE-
pretrained ViT on ImageNet-1K with Cropr and LLF. We
vary the pruning rate from R = 0 (no pruning) to R = 8
(value used in the manuscript). We report top-1 accuracy
and throughput in Tab. 5. For light schedules, with R ≤ 2,
performance is maintained with up to 8% higher through-
put. When allowing for a drop of 0.1 accuracy points, the
model can be accelerated up to 35% using R = 5.

R Acc. im/s Comments

0 85.8 861 1.00×
No performance

drop
1 85.8 883 1.03×
2 85.8 934 1.08×

3 85.7 996 1.16×
0.1% Accuracy

drop
4 85.7 1067 1.24×
5 85.7 1160 1.35×

6 85.6 1244 1.44×
7 85.5 1357 1.58×
8 85.3 1476 1.71×

Table 5. Accuracy and throughput for varying pruning rates on
ImageNet-1k using an MAE-pretrained ViT-L.

Being divisible by 8? Small changes in the number of
keep tokens has a surprisingly large impact on through-
put. We evaluated this effect across image sizes 512, 1024,
and 2048, with corresponding patch sequence lengths M =
1024, 4096, and 16384, respectively, with a patch size of 16
(ignoring the CLS token). Cropr is applied without LLF.
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Figure 2. Effect of sequence length M on throughput for different
image sizes. Annotations denote speedups. A mere reduction of 1
token, instead of giving a negligible speedup, results in significant
throughput drops. Both the x and y-axis are log scaled.

We compare the throughput of two models in Fig. 2. The
solid line uses pruning rates R of 40, 160, and 640 tokens
per block for each image size respectively, resulting in a
TPR of 90% across image sizes. The dotted line on the other
hand artificially sets the sequence lengths to M−1, i.e. sub-
tracting one patch with otherwise identical settings, result-
ing in initial sequence lengths of 1023, 4095, and 16383.

As seen in the plot, despite the reduction of one token
in the dotted line case, the throughput drops significantly.
At the highest resolution, this is in fact a 1.8× slowdown.
This slowdown is likely due to worse memory alignment
and thread utilization in the accelerator. We hypothesize
that schedules where the number of remaining tokens is di-
visible by 8 are likely to achieve the highest throughput and
used that as a rule of thumb when designing pruning sched-
ules for all our experiments.

Numerical precision and FlashAttention. In the main
paper, all models were run using automatic mixed preci-
sion (AMP). Changes to this setting primarily affect model
throughput. Here, we add to that and report throughputs
for models that use (a) FP32 numerical precision, and (b)
AMP in combination with FlashAttention [7]. Cropr is ap-
plied without LLF, setting R as in the previous ablation to
achieve a TPR of 90% for all image sizes.

As shown in Fig. 3, Cropr improves over the unpruned
baseline in terms of throughput in all three settings. Rela-
tive speedups are higher for larger images, in line with the
findings in App. D. Notably, for images at a resolution of
2048× 2048, Cropr achieves a speedup of up to 8.9× when
using AMP.

AMP + Flash Attention is the fastest setting overall. But
even in this optimized regime, Cropr delivers a significant
speedup between 1.7× and 2.3×.
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Figure 3. Throughput ablations for FP32, AMP, and AMP with
FlashAttention across image sizes. Annotations denote speedups
of Cropr over the unpruned baselines.

F. t-SNE visualizations of LLF’s effect

In Sec. 4.4 Tab. 5 of the manuscript, we compared LLF
and the ‘Token Concat’ baseline. Whereas ‘Token Con-
cat’ performs token concatenation after the last transformer
block, LLF does it after the penultimate block, enabling the
pruned tokens and kept tokens to attend into each other and
to loosely speaking synchronize. We visualize this effect
in Fig. 4 using t-SNE [19] down-projected tokens.

We apply t-SNE to the ADE20k validation set, and for
visual clarity we plot only the top-1 scoring token within
the respective pruned token sets per block. Points are then
colored according to the block number of the block after
which they were pruned. As seen in the ‘Token Concat’
case, Fig. 4a, tokens pruned after different blocks occupy
different regions in the embedding space, which might be
challenging for the linear prediction head trying to map
them into class labels. In the LLF case, Fig. 4b, the embed-
ding space is more uniformly occupied by tokens pruned at
different stages, supporting our hypothesis that LLF helps
synchronize these tokens. We argue that this may be easier
for the linear prediction head to then learn a projection into
class logits.
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