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(a) Accuracy Retention After Expert Extraction on ImageNet-1k: The re-
tention decreases significantly as the minimum cluster size percentage re-
duces below 0.6%.
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(b) Accuracy After One Epoch of Fine-Tuning on ImageNet-1k: The ac-
curacy saturates at higher extraction percentages, with minimal gains for
increasing the cluster size percentage beyond 0.6%.

Figure 6. Heatmaps as a function of extraction percentage and
minimum cluster size: (a) immediately following expert extrac-
tion and (b) after a single fine-tuning epoch. A clear gradient is ob-
served from bottom-right to top-left in both plots. Fine-tuning mit-
igates the impact of smaller cluster sizes, with saturation achieved
at minimum cluster size percentages above 0.6%.

8. Sensitivity to Hyperparameters

Since we use a subset of the dataset as samples for expert
extraction, to select an appropriate minimum cluster size
for different sample sizes, we consider the minimum cluster
size relative to the total number of samples as a percent-
age. Increasing this minimum cluster size percentage re-
duces the number of distinct experts because variations in
token density are increasingly interpreted as noise within
larger clusters by HDBSCAN. Since this reduction in the
number of clusters corresponds directly to a reduction in the
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(a) MACs Reduction: The results demonstrate an increase in MACs Reduc-
tion with lower minimum cluster sizes and lower extraction percentages.
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(b) Accuracy After One Epoch of Fine-Tuning on ImageNet-1k: The
threshold highlights the region achieving significant computational effi-
ciency gains.

Figure 7. Heatmaps as a function of extraction percentage and
minimum cluster size: (a) MACs Reduction and (b) Top-1 Accu-
racy after a single fine-tuning epoch. The accuracy decreases as
the MACs Reduction increases, highlighting the trade-off between
computational efficiency and model performance. This suggests
selecting the hyperparameters at the boundary where acceptable
accuracy and computational efficiency intersect.

number of experts, this results in less specialized experts.
Therefore, more neurons per expert are required, leading to
improved accuracy but lower computational savings. Sim-
ilarly, higher extraction percentage values yield larger ex-
perts by preserving more neurons, further enhancing accu-
racy but at the cost of reduced computational savings.

To select appropriate hyperparameters in this inverse re-
lationship between computational efficiency and accuracy,
we perform a hyperparameter search and show our results
using heatmaps.



We use the DeiT-S model evaluated on ImageNet-1k and
apply the same training settings as described in Section 4.

Figure 6 confirms the effect of our hyperparameters, on
model accuracy. Figure 6a shows the Accuracy Retention
immediately after expert extraction (without fine-tuning),
while Figure 6b shows the accuracy after one epoch of
fine-tuning. Both heatmaps show a clear gradient from the
bottom-right to the top-left, indicating that larger cluster
sizes and higher extraction percentages improve Accuracy
Retention. These results also highlight the saturating effect
of fine-tuning. After a single fine-tuning epoch, accuracy
increases significantly for smaller cluster sizes, while clus-
ter size percentages above 0.6% stagnate as they approach
the baseline accuracy of 79.7%. Selecting our hyperparam-
eters near this saturation threshold avoids significant accu-
racy drops while allowing fine-tuning to improve perfor-
mance effectively. This suggests that hyperparameters can
be selected either immediately after expert extraction or af-
ter a single epoch of fine-tuning, making the hyperparame-
ter search simple and computationally efficient.

Furthermore, we aim not only to achieve baseline accu-
racy but also to achieve a significant reduction in MACs.
For the hyperparameter selection, we therefore need to find
the boundary region where computational efficiency and ac-
curacy intersect. Figure 7 shows this trade-off between the
computational efficiency and model performance. Figure 7a
shows the MACs Reduction heatmap and Figure 7b again
shows the accuracy after one epoch of fine-tuning, this time
with a boundary higlighting a region that achieves a signifi-
cant reduction in MACs, while maintaining a high accuracy.
For our experiments, we select parameters along this thresh-
old. As seen in Figure 7b, the most top-left point along this
boundary corresponds to the best accuracy of 77.2% after a
single fine-tuning epoch and a MACs Reduction of 30.75%.
The selected hyperparameters for our experiments are thus a
minimum cluster size percentage of 0.6% and an extraction
percentage of 80%.

9. Sensitivity to Sample Size
To evaluate the effect of the sample size on our method, we
use the DeiT-S model, applying the same training settings
as described in Section 4 of the paper.

Table 3 presents the mean Top-1 Accuracy on ImageNet-
1k over three random seeds, along with the standard devi-
ation, for different numbers of input images used to iden-
tify clusters during expert extraction. The results indicate a
clear trend: as the number of input samples increases, the
standard deviation decreases. However, this improvement
comes with a computational trade-off due to the non-linear
runtime complexity of the HDBSCAN clustering algorithm
with respect to the number of samples.

For our experiments, we select 640 input images, cor-
responding to 126,080 sample tokens clustered per layer.

Number of Input Images Top-1 Acc. (%)

320 77.93 ± 2.281
640 78.23 ± 0.981
960 78.70 ± 0.529

1,280 78.67 ± 0.306
1,600 78.93 ± 0.404
1,920 79.00 ± 0.100
2,240 79.37 ± 0.153
2,560 79.00 ± 0.173

Table 3. Mean Top-1 Accuracy (%) of DeiT-S on ImageNet-1k
as a function of the Number of Input Images used for the expert
extraction. Each accuracy is presented alongside its standard devi-
ation to demonstrate the variability. For a higher number of input
images the standard deviation drops, indicating that the extraction
procedure stabilizes.

Aspect MoEfication Ours

Expert Count Manually Chosen Data-Driven

Expert Structure Disjoint
Partitions

Overlapping
Subnetworks

Routing Target Mean Weight
Columns

Mean Input
Tokens

Domain Focus Large Language
Models

Vision
Transformers

Table 4. Comparison of our method to MoEfication [29].

This configuration achieves a standard deviation below 1%,
balancing runtime and accuracy consistency. Notably, this
stabilization of the standard deviation and accuracy occurs
at a number of input images (640) that cannot even repre-
sent each class in the ImageNet-1k dataset (1,000 classes).
We attribute this to the fact that the clustering is based on to-
kens derived from image patches, which are redundant and
shared across multiple classes, as seen in Section 14. This
redundancy in token distributions allows for robust cluster-
ing even with fewer images than the total number of classes.

10. Comparison to MoEfication
Zhang et al. [29] rely on weight co-activation graphs and a
manually set number of experts. In contrast, we cluster ac-
tivations and let the data determine the number of experts
automatically. Their disjoint partitioning contrasts with our
variance-based extraction that allows overlapping experts,
leading to fewer constraints on the experts. Moreover, while
[29] routes tokens to the most similar mean weight column,
we compute similarities in the input space directly (see Ta-
ble 4). Our results on ImageNet-1k validate this design,
showing performance gains in vision tasks.



Model MACs (G) Parameters (M) Acc. Retention (%) Top-1 Acc. (%)

Swin-T 4.50 28.29 – 81.19
Swin-T-MoEE (Ours) 3.59 (-20.2%) 17.17 (-39.3%) 58.14 79.02
Swin-S 8.76 49.61 – 83.20
Swin-S-MoEE (Ours) 6.19 (-29.4%) 30.65 (-38.2%) 51.16 81.21
Swin-B 15.46 87.77 – 83.47
Swin-B-MoEE (Ours) 10.42 (-32.6%) 53.05 (-39.6%) 50.17 83.12

ConvNeXt-T 4.47 28.59 – 82.12
ConvNeXt-T-MoEE (Ours) 3.53 (-21.0%) 18.57 (-35.0%) 35.28 81.82
ConvNeXt-S 8.71 50.22 – 83.11
ConvNeXt-S-MoEE (Ours) 6.83 (-21.6%) 34.00 (-32.3%) 34.54 82.68
ConvNeXt-B 15.38 88.59 – 83.80
ConvNeXt-B-MoEE (Ours) 10.85 (-29.5%) 49.16 (-44.5%) 34.81 83.23

Table 5. Performance and parameter comparison for additional architectures, evaluated using: Accuracy Retention: retained accuracy
after expert extraction, before fine-tuning; Top-1 Accuracy: final accuracy after fine-tuning; MACs: computational operations, measured
in billions of operations; and Parameters: the total model size in millions of parameters. Our method (MoEE) generalizes to other
architectures by achieving competitive accuracy with significant reductions in MACs and parameters, especially in the Swin-S, Swin-B
and ConvNeXt-B models.

Model MACs (G) Parameters (M) Acc. Retention (%) Top-1 Acc. (%)

DeiT-T 1.30 5.72 – 80.50
DeiT-T-MoEE (Ours) 1.03 (-20.8%) 4.56 (-20.3%) 10.24 79.32
DeiT-S 4.61 22.05 – 85.33
DeiT-S-MoEE (Ours) 3.55 (-23.0%) 16.70 (-24.3%) 55.85 84.94
DeiT-B 17.58 86.57 – 88.20
DeiT-B-MoEE (Ours) 11.73 (-33.3%) 56.83 (-34.4%) 15.76 86.71

Table 6. Performance and parameter comparison of the DeiT-MoEE models, evaluated on CIFAR-100 using: Accuracy Retention:
retained accuracy after expert extraction, before fine-tuning; Top-1 Accuracy: final accuracy after fine-tuning; MACs: computational
operations, measured in billions of operations; and Parameters: the total model size in millions of parameters. Our method (MoEE)
generalizes to smaller datasets and thus data efficient settings.

11. Generalizability to other Datasets and Ar-
chitectures

The results in Table 5 and Table 6 confirm that our method
generalizes well across both hierarchical and convolution-
inspired transformer architectures (Swin-Transformer [17]
and ConvNeXt Models [18]), as well as to smaller datasets
like CIFAR-100 [12]. Despite structural differences, all
variants benefit from fewer MACs, reduced parameter
counts and competitive final accuracies.

In particular, the larger base variants benefit most from
expert extraction. For Swin-B-MoEE and ConvNeXt-B-
MoEE, we reduce the MACs by 33% and 30%, and the
parameter count by 40% and 45% respectively, while main-
taining over 98% of the original accuracy after fine-tuning.
These results confirm that our method becomes increas-
ingly effective with model size, offering substantial savings
in both compute and memory without compromising final
performance.

Notably, we observe that the parameter reduction is
more pronounced in models like Swin and ConvNeXt
compared to DeiT. Which we primarily attribute to their
hierarchical structure. Since experts predominantly form
in the deeper layers, where token throughput is lower but
embedding dimensions are larger, this results in higher
parameter savings but lower relative MAC reductions.

Furthermore, ConvNeXt models show notably lower ac-
curacy retention before fine-tuning. We attribute this to their
use of convolutions, which are inherently more parameter-
efficient than fully connected layers. Thus, removing even
a small set of neurons can have a stronger relative effect
on expressiveness. Nevertheless, the method still recovers
strong final accuracy after fine-tuning, showing that even ar-
chitectures with different inductive biases remain compati-
ble with our approach.



Model MACs (G) Parameters (M) Acc. Retention (%) Top-1 Acc. (%)

DeiT-S 4.61 22.05 – 79.70
HDBSCAN (Ours) 3.19 (-30.6%) 16.54 (-25.0%) 67.60 78.11
DBSCAN 3.52 (-23.5%) 16.53 (-25.1%) 66.47 77.70
OPTICS 3.60 (-21.7%) 16.92 (-23.3%) 67.06 77.79
K-Means 3.54 (-23.1%) 16.60 (-24.7%) 47.34 76.68
BIRCH 3.51 (-23.7%) 16.45 (-25.4%) 48.33 77.01

Table 7. Performance and parameter comparison for different clustering algorithms, evaluated using: Accuracy Retention: retained
accuracy after expert extraction, before fine-tuning; Top-1 Accuracy: final accuracy after fine-tuning; MACs: computational operations,
measured in billions of operations; and Parameters: the total model size in millions of parameters. Our method (using HDBSCAN)
provides the best performance among the density-based clustering algorithms and significantly outperforms the partition-based algorithms.

Method Magnitude-Based Variance-Based

MACs
Reduction

(%)

Acc.
Retention

(%)

Top-1 Acc.
(%)

MACs
Reduction

(%)

Acc.
Retention

(%)

Top-1 Acc.
(%)

Cosine 28.17 64.45 77.15 30.63 67.60 78.20
Euclidean 27.22 63.90 77.35 30.48 66.15 78.10

Hashing 22.34 40.92 76.75 24.98 46.53 77.11

Table 8. Comparison of routing methods (Cosine Similarity, Euclidean Distance and Hashing) using two extraction strategies
(Magnitude-Based and Variance-Based) on DeiT-S and evaluated on ImageNet-1k. The table evaluates three metrics: Accuracy Re-
tention (%): retained accuracy after expert extraction before fine-tuning; Top-1 Accuracy (%): final accuracy after fine-tuning; and
MACs Reduction (%): relative computational savings compared to the baseline model. Variance-Based extraction consistently outper-
forms Magnitude-Based extraction for both routing methods, achieving higher Accuracy Retention, Top-1 Accuracy, and MACs Reduction.
Between the routing methods there is no significant difference, as both Cosine Similarity and Euclidean Distance show comparable results
across all metrics. These results highlight the robustness of the extraction strategies regardless of the used routing method, with Variance-
Based approaches generally providing better performance.

12. Effect of Clustering Algorithm

To evaluate impact of different clustering algorithms on
expert extraction, we conduct experiments on the DeiT-S
model using the same training settings as described in Sec-
tion 4 and evaluate the resulting model on ImageNet-1k.

We compare our default method, HDBSCAN, against
other density-based methods (DBSCAN, OPTICS) as well
as partition-based alternatives (K-Means, BIRCH). For the
partition-based algorithms, which require the number of
clusters as a hyperparameter, we guide their selection using
the number of experts extracted by HDBSCAN per layer
(see Table 9). As shown in Table 7, density-based methods
consistently outperform partition-based ones in the Top-1
Accuracies, particularly in accuracy retention. Among the
density-based methods, HDBSCAN achieves the best trade-
off across all metrics, leading to the highest accuracy reten-
tion and final accuracy, while also yielding the greatest re-
duction in MACs. These results justify our choice of HDB-
SCAN for all main experiments in this work.

13. Effect of Extraction and Routing Method
In order to evaluate the effects of the extraction and routing
methods, we perform another ablation study. For the ex-
traction strategy, we consider two methods for selecting the
hidden neurons of each expert. In the Magnitude-Based ap-
proach, neurons are selected based on their mean activation
magnitude, prioritizing neurons with higher average activa-
tions. The Variance-Based approach instead prioritizes neu-
rons with higher within-cluster variance, capturing diversity
in activation patterns.

Additionally, we compare three routing approaches:
Cosine Similarity, where new input tokens are routed to
the expert with the highest cosine similarity; Euclidean
Distance, which selects the expert with the smallest
Euclidean distance to the cluster mean; and Hashing, an
orthogonal method that uses a hash function for routing.
Unlike Cosine and Euclidean routing, which assume a
Gaussian cluster shape and rely on descriptive statistics of
the inputs, hashing requires that the same function be used
during extraction and inference.
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(a) Token routing distributions at different layers for visually similar truck-
like classes (fire engine, garbage truck, pickup, and tow truck) compared
to the distribution across all ImageNet-1k classes (all). These classes show
similar routing patterns among themselves and align with the distribution
of all classes.
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(b) Token routing distributions at different layers for visually similar shark-
like classes (great white shark, tiger shark, and hammerhead) compared to
the distribution across all ImageNet-1k classes (all). These classes show
similar routing patterns among themselves but differ significantly from the
distribution of all classes.

Figure 8. Comparison of token routing distributions for visually similar classes in layer 11. (a) presents routing patterns for truck-like
classes, which closely resemble the overall routing distribution of all classes. (b) shows routing patterns for shark-like classes, which form
similar patterns that diverge from the overall distribution. These results suggest that truck-like classes result in more generic tokens shared
across multiple classes.
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Figure 9. Distribution of variance and mean across neurons in
layer 11. The y-axis uses a logarithmic scale to emphasize the
differences between neurons. Vertical dashed lines indicate the
points where the cumulative sum of the variance and mean reaches
80%. These results demonstrate that the mean is more uniformly
distributed, requiring a larger number of neurons to achieve the
same cumulative percentage compared to the variance.

Notably, Magnitude-Based prioritization results in a
smaller reduction in MACs for a given extraction percent-
age compared to Variance-Based prioritization. As shown
in Figure 9, this is because of differences in the distributions
of variance and mean across neurons. The mean activations
have a more uniform distribution, necessitating a larger
number of neurons to account for a specific cumulative
percentage.

In contrast, the variance is concentrated among fewer
neurons, allowing Variance-Based extraction to cover a
larger cumulative percentage with fewer neurons. This con-
centration results in greater MACs reductions for the same
extraction percentage. To enable a fair comparison between
the two methods at similar MACs reductions, the extraction
percentage is adjusted from 80% for Variance-Based
extraction to 60% for Magnitude-Based extraction.

Table 8, shows that Variance-Based extraction consis-
tently outperforms Magnitude-Based extraction across all
metrics: Accuracy Retention, Top-1 Accuracy, and MACs
Reduction. On the other hand, the choice of routing method
had no significant impact on the overall results, with Co-
sine Similarity and Euclidean Distance having comparable
accuracy and computational savings in both extraction sce-
narios. As the Cosine Similarity can be computed without
normalization, we chose the Cosine Similarity as the default
routing method in all experiments, due to the better compu-
tational efficiency.

14. Insights into Routing Distributions
We further analyse the routing distribution in Figure 8,
which shows the token routing distributions for selected
visually similar classes in layer 11, compared to the dis-
tribution across all 1,000 ImageNet-1k classes. Specifi-
cally, Figure 8a presents the routing distributions for truck-
like classes (fire engine, garbage truck, pickup, and tow
truck), while Figure 8b shows the distributions for shark-
like classes (great white shark, tiger shark, and hammer-
head).



Model Layer 0 1 2 3 4 5 6 7 8 9 10 11

DeiT-T-MoEE – – – – – – – 4.67 7.67 8.33 8.00 10.33
DeiT-S-MoEE – – – – – – 2.67 6.00 7.67 8.67 8.67 10.67
DeiT-B-MoEE – – – – – – 7.67 8.00 9.00 8.33 9.00 11.00

Table 9. Mean number of experts extracted across layers for different DeiT-MoEE models. Specialization into distinct activation clusters
emerges progressively in the deeper layers.

Model Stage 0 Stage 1 Stage 2 Stage 3

Swin-T-MoEE – – 2.00 5.50
Swin-S-MoEE – – 2.10 9.00
Swin-B-MoEE – – 2.90 10.50

ConvNeXt-T-MoEE – – 2.00 4.50
ConvNeXt-S-MoEE – – 2.50 4.50
ConvNeXt-B-MoEE – – 2.15 6.00

Table 10. Mean number of experts activated across model stages for Swin and ConvNeXt MoEE variants. Expert specialization emerges
predominantly in the later stages, especially in deeper variants.

The routing patterns of visually similar classes show a high
degree of overlap, suggesting similar classes are processed
through similar expert selections. However, the routing
distributions between truck-like and shark-like classes are
noticeably different from each other, indicating that visual
similarity influences token routing, even after the positional
encodings have modified the token representations.

Furthermore, the distribution for the truck-like classes
closely aligns with the distribution of all 1,000 ImageNet-1k
classes, unlike the shark-like classes. These show cohesive
routing patterns among themselves but differ significantly
from the overall distribution. Since the routing is based on
a Cosine Similarity to fixed mean tokens, this similarity in
routing distributions means that tokens in truck-like classes
are similar to tokens across all classes. This again confirms
that the token redundancy allows the model to generalize
routing patterns effectively (see Section 9).

15. Insights into Expert Formations

Table 9 and 10 show the mean number of experts extracted
in each layer for different models. Notably, the earlier lay-
ers do not exhibit any formed clusters, reflecting the more
general feature representations in shallower layers. Deeper
layers, on the other hand, display more experts reflecting the
progressively stronger specialization, which aligns with our
analysis that more discriminative or class-relevant features
emerge later in the network.

An important aspect is that each experts can vary in size
and may partially overlap in their selected neurons. This
partial overlap means that a strict one-to-one partition of
the MLP into disjoint experts does not necessarily occur.

(a) Selected sample patches routed to expert 3 in layer 11.

(b) Selected sample patches routed to expert 6 in layer 11.

(c) Selected sample patches routed to expert 10 in layer 11.

Figure 10. Figure of selected sample patches from DeiT-B

Nonetheless, the union of all extracted experts in a given
layer remains smaller than the original MLP of that layer, as
evidenced by the reduced parameter counts in our results.

To provide a qualitative analysis, we additionally visu-
alize the image patches corresponding to tokens routed to
specific experts. We first save the token routings for the se-
lected experts at layer 11 for random batches of validation
data. We then identify the corresponding image patches
from the original input for each token. Note that these
patches have undergone multiple processing steps in MHSA
and MLP layers, so the tokens may no longer resemble the
original patches. For a better insight, the resulting patches
are then clustered, and samples within one cluster are se-
lected for visualization, providing a visual understanding of
the type of patches routed to each expert (see Figure 10).


