
PreciseCam: Precise Camera Control for Text-to-Image Generation

Supplementary Material

The supplementary material for PreciseCam: Precise Cam-
era Control for Text-to-Image Generation includes this PDF
document, an HTML browser featuring additional image re-
sults, and a demo video showing the usability of our model.

A. Training Details
To train our framework we use the ControlNet [54] loss
function. PF-US maps are encoded as RGB images, where
the up-vector coordinates are scaled from [-1, 1] to [0, 255]
and assigned to the R and G channels, while latitude val-
ues are mapped from [-90, 90] to [0, 255] and represented
in the B channel. We initialize ControlNet using the SDXL
model weights from Stability AI1, and train it on our entire
dataset using the Adam optimizer [26] with hyperparame-
ters β1 = 0.9, β2 = 0.999, weight decay w = 10−2, and a
learning rate of 10−6. We employ a total batch size of 32,
an input resolution of 1024x1024 pixels, 16 floating-point
precision, and 70,000 steps. As per usual practice, 50%
of the text prompts are replaced by empty strings during
training. The training was executed within the Accelerate
framework [17] for four days on eight NVIDIA RTX A100
GPUs.

B. Dataset Details
To train our model, we require triplets of RGB images, cor-
responding text prompts, and PF-US camera parameters (Ii,
pi, Ωi). It is essential for our dataset to be diverse in both
content and camera parameter values. We explore several
approaches:
• Existing Datasets: Jin et al. [24] present a dataset con-

taining RGB images paired with ground-truth PF maps.
However, they primarily depict urban outdoor scenes and
lack comprehensive coverage of camera parameters. For
instance, images depicting large vertical FoVs or extreme
distortions are absent.

• PF estimators: Previous works offer deep-learning mod-
els to estimate the PF map of a given image [24, 41], pri-
marily intended for camera calibration. Thus, an alterna-
tive approach might be to apply this model to an exist-
ing image dataset, thus obtaining its associated PF maps.
However, the estimated PF maps lack the precision re-
quired for our training needs, limiting our model’s abil-
ity to learn effective camera view control across the full
range of camera parameters (see Fig. 13). Moreover, PF
estimation models do not always consider the distortion
parameter ξ.
1https : / / huggingface . co / stabilityai / stable -

diffusion-xl-base-1.0
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Figure 13. Incorrect PF map estimations using the model from Jin
et al. [24] for different RGB images. These errors make the esti-
mator unsuitable for our dataset creation, as the introduced noise
is substantial enough to compromise our model’s training.

• Cropping 360◦ images: By using 360◦ images, we can
extract patches corresponding to specific camera parame-
ters, providing ground-truth PF-US maps that are crucial
for our application. This approach allows us to sample
the entire range of camera parameters while leveraging
the Unified Spherical camera model, including its ξ dis-
tortion parameter.
To generate our dataset with ground-truth PF-US maps,

we adopt this last approach using 360◦ images. We sam-
ple our set of camera parameters and obtain, for each sam-
pled quartet Ω=(roll, pitch, vFoV, ξ) the corresponding
patches cropped from the 360◦ images, and their PF-US
maps. To maximize content diversity, we use six differ-
ent 360◦ image datasets: 360-SOD [28], CVRG-Pano [33],
F-360iSOD [55], Poly Haven HDRIs [18], Sitzmann et
al. [40], and 360cities [1]. These feature outdoor and in-
door scenes, containing both natural and urban settings with
diverse activities and environments.

From each 360◦ image, we sample 24 patches. To maxi-
mize the content diversity that each 360◦ image has to offer
and avoid repeatedly sampling the same areas, the image
is divided into six regions, with four patches sampled from
each region using different camera parameters Ω. For each
region, we randomly sample yaw (necessary only to estab-
lish the 360◦ image horizontal coordinate) and pitch. For
each pair of yaw and pitch, we randomly sample two vFoV
values (one small ∈ (0, 0.5) and one large ∈ [0.5, 1)), two
ξ values (low ∈ [15, 60) and high ∈ [60, 140)), yielding
four possible combinations. We sample a roll rotation for
each combination to generate four distinct image crops of
the same region. This approach ensures that the same image
content is depicted across different image crops, showcas-
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Figure 14. Object count for each ADE20K class per parameter range in our dataset (colored bars; each color represents a class), and
parameter frequency distribution (red line) as the number of images for each value. Please note the different scales.

ing both minimum and maximum vFoVs and varying distor-
tion levels at different rotations. This allows the model to
learn how these parameters influence the final image con-
tent (e.g., how the appearance of a chair at a high vFoV
varies when ξ is increased or decreased).

This results in a dataset of 57,380 RGB images with
a ground-truth PF-US condition. Sampling ranges for
each camera parameter are: roll ∈ (−90◦, 90◦), pitch ∈
(−90◦, 90◦), vFoV ∈ [15◦, 140◦] and ξ ∈ (0, 1). We use
BLIP-2 [29] to generate a descriptive text prompt pi for
each image Ii.

B.1. Dataset Analysis

We ensure comprehensive camera parameter coverage by
systematically selecting camera parameters for each image.
As shown in Fig. 14, the dataset covers the full sampling
range of parameters, though specific ranges of pitch and
vFoV are more heavily represented. This design choice
was aimed at increasing content variability: the greater rep-
resentation of pitch values corresponds to the equator of
panoramic images, as it contains the most semantic infor-
mation [40], and the lower vFoV over-representation fo-
cuses on increasing the presence of first-plane objects from
diverse camera angles while reducing image crop overlap.

Our dataset consists of images from six well-established
datasets, covering a diverse range of scenes. To evaluate
content diversity across camera parameter ranges, we used
the Segformer [47] model to identify the number of distinct
classes (visualized by different colors in Fig. 14).

C. Additional Results
We present additional results of PreciseCam for various
prompts in the form of an HTML browser. We show how
our model can accurately generate images with the specified
camera view. Within each tab, we display in each row the
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a car beside a field of 
blooming sunflowers

a street with people 
walking by at sunset

a park with a blue lake 
reflecting the sky and tall trees

Figure 15. Kumari’s model [27] needs to be trained on specific
objects (a car in this example), which will wrongly appear in the
output despite being absent in the prompts.

generated images for the same prompt when a single cam-
era parameter is varied while keeping the others fixed. The
first row of each tab shows the PF-US for the correspond-
ing camera settings. Note that the quality of the images has
been reduced to meet the upload size in the paper submis-
sion platform.

Additionally, although Kumari et al. [27] address a dif-
ferent problem (i.e., controlling camera view while generat-
ing novel object views), we provide a comparison in Fig. 15,
showing how it introduces the training object even when ab-
sent in the prompt.

D. Prompt Engineering for Baseline SDXL

In Sec. 4 and Fig. 2, we show how our model maintains the
text prompt adherence exhibited by the baseline SDXL de-
spite the inclusion of camera control, achieving comparable



CLIP and BLIP scores [22]. This comparison is based on
2,940 images generated by both our method and the base-
line SDXL. To enable the baseline SDXL to produce the
correct camera views, we employed prompt engineering,
explicitly specifying the desired view to encourage distinct
camera perspectives.

This section outlines the prompt engineering techniques
applied to SDXL. After extensive testing, we identified the
following prompt engineering scheme as the most effective,
occasionally producing camera views resembling the speci-
fied parameters. The focus was on roll, pitch, and vFoV, as
distortion effects could not be replicated. To each prompt,
we appended the following descriptions:
• Roll below 0º: Dutch angle shot, frame tilted <roll

value> degrees to the left.
• Roll above 0º: Dutch angle shot, frame tilted <roll

value> degrees to the right.
• Pitch below 0º: Picture taken with a high angle, bird’s

view of <pitch value>.
• Pitch above 0º: Picture taken with a low angle, worm’s

view of <pitch value>.
• VFoV below than 30º: Picture taken with a vertical field

of view of <vFoV value> degrees, a extreme close-up
shot.

• VFoV between 30º and 55º: Picture taken with a vertical
field of view of <vFoV value> degrees, a close-up shot.

• VFoV between 55º and 75º: Picture taken with a vertical
field of view of <vFoV value> degrees, a medium shot.

• VFoV between 75º and 90º: Picture taken with a vertical
field of view of <vFoV value> degrees, a long shot.

• VFoV above 90º: Picture taken with a vertical field of
view of <vFoV value> degrees, a extreme long shot.

E. User Study
The lack of reliable metrics to quantify the alignment be-
tween the input camera view and the camera view generated
by our model prompted us to conduct a user study compar-
ing our approach with existing models. In this study, par-
ticipants evaluated and ranked the alignment of generated
images with a specific camera view represented as PF-US.
The comparison included images produced by three mod-
els: ours, SDXL, and Adobe Firefly. To generate the SDXL
and Adobe Firefly images, we applied the prompt engineer-
ing detailed in Sec. ??, incorporating the appropriate tag for
Adobe Firefly when available. A total of 34 participants
ranked 16 examples after becoming familiar with the PF-
US representation. Tab.1 presents the percentage of times
each model was ranked first, second, or third, along with the
rank product for each model. The results indicate that our
model outperforms previous approaches, being most fre-
quently selected as the best match for the desired camera
views. Fig. 19- 20 illustrates the 16 examples used in the
study, showing that SDXL rarely produces a camera view

similar to the target, while Adobe Firefly lacks the preci-
sion needed for accurate control.

Despite these insights, the user study has certain limi-
tations as an evaluation metric. Some participants encoun-
tered difficulties in interpreting the PF-US representation,
which may have affected their ability to accurately assess
alignment.

Table 1. Percentage of times each model was ranked as the best,
second-best, and third-best match to the target camera view. The
final column presents the rank product, highlighting the superior
performance of our model compared to SDXL and Adobe Firefly.

Model 1st best 2nd best 3rd best Rank Product ↓
Adobe Firefly 14.89% 54.23% 30.88% 2.14
SDXL 4.04% 33.09% 62.87% 2.57
Ours 81.07% 12.68% 6.25% 1.20

F. Generated Camera View Accuracy
The absence of reliable metrics to evaluate the camera pa-
rameters of generated images challenges the ability to as-
sess the precision of our camera control. Jin et al. [24] offer
a PF-estimator that given an image predicts its roll, pitch,
and vFoV. However, the PF-estimator is not perfectly accu-
rate (see Sec. B in the supplementary), thus we first assessed
its general accuracy using our dataset, setting a baseline by
estimating the camera parameters and calculating the me-
dian error between the estimation and the ground truth (see
Tab. 2). Note that the PF-estimator does not predict ξ. Then,
we estimated the PF of 1,432 images generated with our
model using the PF-estimator. The images were generated
with various prompts, varying each camera parameter in 5º
increments. Table 2 shows the median error in degrees (dif-
ference between input and estimated parameters). Our re-
sults show that PreciseCam’s precision aligns with the ac-
curacy achieved by the PF-estimator for the ground-truth
data.

Table 2. PF-estimator accuracy as the median error between the
ground truth and estimated parameters for the dataset (baseline),
and between the input and estimated parameters for our model.

PF-Estimator Accuracy Baseline Our Model
Roll 8.65º 6.31º
Pitch 4.91º 12.01º
vFoV 16.88º 16.08º

G. Consistent Camera for Input Variations
PreciseCam consistently generates the specified camera
view regardless of variations in input noise or prompts.
Fig. 16 shows our model’s ability to produce diverse image
alternatives with the correct camera view when the input
noise varies while keeping the prompt and camera parame-
ters fixed. Additionally, Fig. 17 illustrates that changes in



Figure 16. Generated images for different input noises but using the same prompt and camera parameters. PreciseCam produces different
images while adhering to the specified camera parameters represented as the PF-US map.

A rustic farm with a red barn, a 
vintage car parked nearby, and 

fields stretching out to a blue sky.

A rustic farm with a red barn, a 
vintage tractor parked nearby, and 
fields stretching out to a blue sky.

A rustic farm with a red barn, 
horses grazing, a vintage tractor 

parked nearby, and fields 
stretching out to a blue sky.

PF-US

Figure 17. Generated images for small variations in prompt using the same noise and camera parameters. PreciseCam produces different
images based on the prompt description while maintaining the specified camera view represented as the PF-US map.

the prompt do not affect the final camera view of the gener-
ated images for a given set of camera parameters and input
noise. Instead, the model adjusts the content to align with
the modified prompt.

H. Compatibility with Multiple ControlNets

PreciseCam is compatible with other ControlNet mod-
els [54], such as pose, depth, or edge maps. As shown
in Figure 18, our model integrates seamlessly with vari-
ous ControlNets. While pose control2 adjusts the subject’s
pose, it does not control the background. By using Pre-
ciseCam, we apply camera view control to the final image
while achieving the desired person’s pose. Additionally, in
challenging cases where depth maps only represent objects
without defining the background’s depth, our model can
boost the generation of a coherent background with an ac-
curate perspective3. Notice in Fig. 18 how the background
perspective generated with PreciseCam aligns more closely
with the house’s perspective.

2https : / / huggingface . co / thibaud / controlnet -
openpose-sdxl-1.0

3https://huggingface.co/diffusers/controlnet-
depth-sdxl-1.0

Figure 18. PreciseCam is compatible with previous ControlNets,
including pose control (left) and depth control (right). We show-
case control over the person’s pose while simultaneously control-
ling the camera view, and our ability to generate images based on
depth inputs while maintaining a background with consistent per-
spective. In the depth example, observe the change in perspectives
of the red house in the background when we include camera con-
trol (right-bottom).



I. Video Demo
We provide a supplementary video highlighting the usabil-
ity of our model. The video shows how users can intuitively
adjust camera parameters with sliders to preview the desired
camera view and generate an image based on the prompt.



SDXL

PreciseCam
Adobe Firefly

Figure 19. User Study Questions 1-8: Participants were shown sample images and asked to rate how well images A, B, and C matched
the target camera view shown at the top. As the order was randomized, the color coding indicates whether the images correspond to our
PreciseCam, Adobe Firefly, or SDXL.



SDXL

PreciseCam
Adobe Firefly

Figure 20. User Study Questions 1-8: Participants were shown sample images and asked to rate how well images A, B, and C matched
the target camera view shown at the top. As the order was randomized, the color coding indicates whether the images correspond to our
PreciseCam, Adobe Firefly, or SDXL.
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