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We refer readers to the interactive visualizations at our
project page that show results for all presented models on
the ELP test sets. In this document, we provide details re-
garding our proposed dataset (Section 1), additional imple-
mentation details (Section 2) and describe additional exper-
iments and results (Section 3).

1. Construction of the ELP Dataset

As mentioned in the main paper, we leveraged scene-
level Internet photo collections for constructing the ELP
dataset, focusing on pairs with predominant rotational mo-
tion. Given scale is a degree of freedom in SfM reconstruc-
tion algorithms, we established a scene-based translation
threshold as described below. We construct mutual nearest
neighbors edge-weighted graphs, with one graph per land-
mark. In each graph G, nodes v € V correspond to images,
and two images are connected by an edge e € E if they are
both among each other’s K nearest neighbors (K is empir-
ically set to 5). The weights w of the edges in each graph
G are set according to the L2 distances between the trans-
lation of the images. For each landmark, we compute the
weighted node degree d,, for each node, defined as the sum
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of the edge weights of edges incident to that node, divided
by the number of such edges.

For example, for an image node v; with translation 7T;
and its mutual nearest neighbors represented by nodes v;,
where j € [0, ..., k] and k < K, the weight of the edge e; ;
is calculated as w; ; = ||T; — Tj||2. The weighted node
degree d,, is then computed as d,,, = %Z?:owm- Finally,
for the entire scene graph, we select image pairs with edge
weights w below the median value of weighted node de-
grees, specifically where w < med{d, }.

The images for ELP training set were curated from
MegaScenes [14] that utilizes COLMAP [12] for its ground
truth poses and uses a Manhattan world alignment. Our
benchmark contains two test set, as follows:

sELP. Image pairs in the sELP test set contain images
from the Cambridge Landmarks [1] dataset. The ground
truth poses of Cambridge Landmarks Dataset [1] are based
on VisualSFM [17]. The ground truth poses were rotated
so coordinate system would align with the gravity and hor-
izontal axis using [8].

wELP. Image pairs in the wELP test set contain images
from the MegaDepth [7] dataset. MegaDepth also utilizes
COLMAP [12] for its ground truth poses and use Manhattan
world alignment.

Both test sets underwent a filtering process to remove
any images where transient objects occupied over 40% of
the image area. This selection was made using a Seg-
Former [5] segmentation mask, targeting specific transient
object categories. Specifically, we consider: person, car,
bus, bicycle, boat, truck, airplane, van, ship, minibike, and
animal.

In Table 1, we provide the image pair distribution across
the different scenes of sELP and wELP. The distributions
for additional sets are available in the dataset directory.

2. Implementation Details
2.1. Network Architecture

Our approach employs an encoder-decoder architecture to
predict three Euler angles of relative rotation. Specifically,
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Scene name Scene number Large Small None  All

sELP

Total - 2512 827 1961 5300
GreatCourt - 548 163 248 959
KingsCollege - 409 12 0 421
StMarysChurch - 405 233 35 673
OldHospital - 395 70 0 465
Street - 494 342 1678 2514
ShopFacade - 261 7 0 268
wELP

Total - 2700 829 643 4172
Trafalgar Square, London 1 566 207 157 930
San Marco,Venice 8 226 121 138 485
Piazza del Popolo, Rome 17 350 34 5 389
Vatican, Rome 15 206 101 68 375
Piazza del Campo, Firenze 115 186 111 37 334
Red Square, Moscow 559 231 64 26 321
Piccadilly Circus, London 16 166 92 55 313
Wenceslas Square, Prague 306 237 10 44 291
Washington Square Park, New York City 102 222 4 2 228
Gendarmenmarkt ,Berlin 258 87 11 21 228
Place des Vosges ,Paris 294 53 21 12 86
Grand Place,Brussels 61 21 23 36 80
Royal Mile,Edinburgh 162 52 10 5 67
Bruges 224 33 4 24 61
Grote Markt, Antwerp 472 32 6 10 48
0Old Town , Stockholm 238 16 7 2 25
Marienplatz , Munich 65 16 3 1 20

Table 1. The distribution of image pairs across different 3D scenes
in the test sets of ExtremeLandmarkPairs (sSELP and wELP). The
scene number denotes the number of landmark in MegaDepth [7]
dataset.

we utilize LoFTR as our image encoder, extracting its dense
features (after LoFTR’s stage 2) with the dimensions of
256 x % X %. Then, by concatenating the two features
along the third dimension, we obtain a feature map of size
256 x % X %. We augment the feature dimension by con-
catenating three auxiliaries masks: keypoints, matches and
segmentation mask. This augmented input is then projected
into the transformer decoder embedding space, which has
a dimensionality of 256. Additionally, we introduce three
learnable tokens. Our rotation estimation transformer builds
upon the DinoV2 ViT architecture with a patch size of 1, 4
attention heads, and a depth of 8. Finally, the transformer’s
output is normalized and average-pooled. To estimate the
relevant angle, we concatenate the averaged feature token
with the corresponding learnable token. Next, we input this
concatenated representation into a stack of three fully con-
nected layers resulting in a 360-dimensional output distribu-
tion. Overall, our model comprises approximately 80 mil-
lion parameters in total, including LoFTR and SegFormer,
with 22 million of those being learnable parameters.

2.2. Input Euler angles

The Euler angles that are fed into the rotation estimation
transformer are learnable tokens (previously demonstrated
in [6] and [15]) These tokens are initially set with random

values drawn from a standard normal distribution. During
training, they adaptively identify and focus on relevant im-
age tokens specific to each Euler angle. During inference,
these learnable tokens are initialized by loading from the
optimized weights.

2.3. Auxillary Channels

Keypoints & Matches Masks The keypoints are extracted
from the LoFTR output. Additionally, for the matches
mask, we use geometric verification using RANSAC (re-
projection error set to 1 and confidence to 0.99) to estimate
the Fundamental matrix and filter out any outliers. Only
the keypoints with a confidence value which is greater than
0.8 are considered for geometric verification. We create
binary masks for both keypoints and matches, which are
then rescaled to match the dimensions of LoFTR features
(% X %). Finally, we concatenate these image masks side
2W

by side to obtain the resulting size of 2 x % X ==

Segmentation Mask The segmentation map was gener-
ated using SegFormer-B3. SegFormer [5] has demonstrated
strong performance on outdoor image datasets, such as
Cityscapes and ADE-20K. We consider the following cat-
egories: sky, building, road, sidewalk, streetlight. All re-
maining labels are labeled as other. Additionally, road and
sidewalk are grouped together, as the borders of their masks
are noisy and both labels have similar 3D spatial context.
Finally, we resize the modified segmentation mask to match
the LoFTR feature dimensions using NEAREST_EXACT
interpolation mode. The resulting concatenated mask has a
dimensionality of 1 x & x 2W

8~ 8
2.4. Training Details

In all of our experiments, we used Adam optimizer (5; =
0.5, 82 = 0.9). The first stages are trained with a single
learning rate set to 1 x 10™%, the ELP and AlIm stages are
trained with learning rate of 1 x 107°. The batch size is
20, except when finetuning over ELP, where it is adjusted
to 40 as it achieved a cleaner convergence. The training du-
ration on one Nvidia RTX A5000 are as follows: [5 days,
3 days, 1 hour, 12 hours] for the [[3],AFoV,Alm,ELP]
stages, respectively. The total number of epochs for the
training process is 34. The number of iterations sufficient
to convergence is roughly 700K iteration for the first two
stages and 3K for the last 2 stages. While training on the
ELP dataset, we addressed the imbalance of overall rel-
ative rotations for non overlapping pairs in ExtremeLand-
markPairs by using a weighted random sampler. This sam-
pler assigned weights based on the overall rotation angle.
Additionally, for the overlapping pairs, due to the overlap
categories imbalance (40000 images for large overlap and
15492 for small overlap), we employed a weighted random
sampler that weighted by the overlap category. We used
the balanced validation split of ExtremeLandmarkPairs to
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monitor training progress of ELP (with a stopping criterion
of MGE improvement dropping below 0.5°).
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Figure 1. Histogram of FoVs, corresponding to the Extreme-
LandmarkPairs training set. As mentioned in the text, this was
used for sampling square perspective images for AFoV with a dis-
tribution that closely resembles in-the-wild image pairs.

2.5. Training with Data Augmentations

Field of View Augmentations (AFoV) To better model the
distribution of FoV associated with in-the-wild image pairs,
we analyzed the distribution of ELP training set, as shown
in Figure | (considering fov, and fov, together). The data
revealed that both the median and average FoV values sig-
nificantly deviate from 90 degrees which is assumed by
prior work. Therefore, to better resemble to in-the-wild im-
ages, we curated a new dataset of panorama perspective im-
ages with a range of FoVs. These images were cropped into
squares, with a FoV value selected from a Gaussian distri-
bution with mean set according to the ELP training set mean
(ueLp = 40.9°) and a standard deviation which is 1.5 times
the standard deviation of the ELP training (ogp = 21.2).
The distribution was adjusted to exclude values below 30°
and above 90° to maintain reasonable image quality. This
was achieved by clipping these regions and subsequently re-
normalizing the distribution. Following DUST3R [16], we
also crop the images by the following aspect ratios [(256,
192), (256, 168), (256, 144), (256, 128)]. After cropping,
we added zero padding to the remaining areas to achieve a
uniform size of 256x256 for all images. For each batch, a
single aspect ratio was chosen. We follow the method in-
troduced in [3], first training on overlapping pairs and then
on non-overlapping pairs. The overlap training set includes
432992 pairs (35% large overlap, 65% small overlap), non
overlap training set includes 1067764 pairs (15% large over-
lap, 30% small overlap and 55% non overlapping pairs).

Image-Level Appearance Augmentations (AIm) As
mentioned in the main paper, to perform image-level
appearance augmentations, we apply the conditional
InstructPix2Pix[2] model on a subset of our data. The In-

structPix2Pix editing process uses images that have been
augmented with different field of views. The training set
for this stage consists 18913 pairs. The model, instruct-
pix2pix-00-22000.ckpt, was configured with a text coeffi-
cient (cfg-text) of 7.5 and an image coefficient (cfg-image)
of 1.5, over a total of 100 steps.

Given that InstructPix2Pix’s parameters are applied uni-
formly across all images, individual responses to the edits
can vary, occasionally altering the image’s structure. Such
alterations could potentially interfere with the cues neces-
sary for estimating relative rotation. To mitigate this, a
post-processing filtering stage was implemented in order to
remove images whose structure was modified.

The filtering process quantifies structural consistency by
analyzing the primary scene boundaries (predominantly the
skyline) through a comparative analysis of the segmentation
maps from both the source image and its InstructPix2Pix
transformation. These segmentation maps are generated us-
ing SegFormer[5]. Prior to filtering, we exclude images that
lack static structural elements (roads, buildings) or contain-
ing predominantly transient features like cars and people.
Additionally, indoor scenes (e.g., tunnels) are excluded due
to their limited relevant segmentation labels, which gener-
ate noisy segmentation maps.

To identify the main borderlines, we focus on the specific
labels ‘building’, ‘road’, ‘sky’, ‘tree’, and ‘car’, and apply
the softmax function exclusively to these categories. We
define a main category (C) whose boundary will serve as
the major boundary. The main category is selected as the
first available mask in the following order: ‘sky’, ‘building’,
‘road’. The categories not chosen as the main category are
defined as secondary categories.

The binary mask M, is designed to highlight changes in
the major boundary and assign a score reflecting the degree
of change. Let M, represent the binary mask of C of the
original image and M, the binary mask of C after Instruct-
Pix2Pix transformation. To identify the original boundary,
we apply erosion and dilation techniques to M, (using a
disk size of 5 for ‘sky’ and 10 for ‘building’ and ‘road’).
The difference between the eroded and the dilated mask of
the original image creates a pronounced border around the
main category, denoted as M. Next, we construct M.,
the binary mask for the altered pixels, using the formula
M. = M, U M; — M, N My — M. Additionally, we ex-
clude any transient elements like ‘trees’ and ‘cars’ from the
count of altered pixels in M..

The score for the major borderline S, is then calculated

by the following formula S, = 1 — % , which

gives us a measure of the amount of unwanted change for C.
Additionally, if the total number of changed pixels exceeds
500, the score for the main category is set to zero.

The final Filtering Augmentation Score (FAS) is com-
posed from a multiplication of S, and a binary score for the
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Figure 2. Filtering InstructPix2Pix Image augmentations. The Alm training set was filtered using our Filtering Augmentation Score
(FAS), detailed in Section 2.5. Above, we present three examples with high (top rows) and low (bottom rows) FAS values. Each example
shows two rows: the original image with its segmentation map and binary mask (M), followed by the InstructPix2Pix transformation with
its corresponding segmentation and mask (M;). As illustrated above, these binary masks provide meaningful cues for whether or not the
model’s output modifies the scene structure, which is undesirable for our problem setting.

secondary categories. We assign a binary score to the sec-
ondary categories to evaluate if they have undergone a sig-
nificant change. If a second category’s mask exceeds 10,000
pixels and more than 50% of the pixels have changed, we
assign a score of 0; otherwise, we assign a score of 1. We
empiricially set the FAS threshold to 0.92.

In Figure 2, we provide three examples of Instruct-
Pix2Pix transformations with high FAS and three with low
FAS (i.e., which are excluded from the final training set).
For each example, the top row respectively shows the orig-
inal image, the reduced label segmentation map, and M,,.
The second row displays the image after InstructPix2Pix
transformation, its reduced label segmentation map, and
M. The left column on the top row shows a transformation
to a night time scene. Note that SegFormer effectively iden-
tifies the building despite the darkness, and M, is closely
matches M;. The middle column illustrates a transforma-
tion to sunrise. In the top example, SegFormer accurately
identified the building lines despite that severe transforma-
tion. However, in the bottom example, the transformation
was too extreme, turning the building into sky (which is
accurately reflected in both M, and M;). In the right col-
umn, the top example demonstrates that the transformation
into a Christmas scene altered the scene (and the original
segmentation map). However, by reducing the labels, it be-
comes clear that the relevant semantic regions remained un-
changed. In the bottom right example, InstructPix2Pix al-
gorithm’s transformation failed, and on the bottom left ex-
ample the transformation to summer changed the structure
of the scene. Both correctly identified by reduced label seg-
mentation map. Note that although the change of the sky-

line (the change between M, and M;) in the bottom left
example is not drastic, it is accurately assigned a low FAS
score.

2.6. Baselines

We compare our method with six pre-existing methods
for rotation extraction, including both classical (SIFT) and
learning-based methods (LoFTR, 8PointVit, ExtremeRo-
tation, CascadedAtt, Dust3R). The methods estimate the
pose for each pair, and the evaluation metrics are calculated
from the pose estimation, as described in the main paper.
For SIFT and LoFTR, the pose estimation might fail due
to an insufficient number of points that pass the geomet-
ric method (RANSAC). These pairs are excluded from the
evaluation metric statistics, as is done in previous works.
It is important to mention that this exclusion provides an
advantage to these methods, as removing the invalid pairs
likely reduces the number of “hard” pairs, thereby increas-
ing their corresponding metric statistics. The percentage of
invalid pairs is presented to capture this phenomenon.

SIFT The SIFT pipeline uses the OpenCV Python library,
and the default random number generator is initialized with
the seed value 12345. Images are resized so that their largest
dimension is 256, and their intrinsic matrices are adjusted
accordingly. Keypoints and descriptors for both grayscale
images are detected using the SIFT detector. The ’Flann’
KNN algorithm is used to match the key points, followed
by filtering matches using Lowe’s ratio test, ensuring that
the nearest distance is smaller than the next nearest by a
factor of 0.7. Image pairs with less than 6 matches are fil-
tered. Since image pairs can have different intrinsic camera



StreetLearn SELP wELP
Method MGE] RRA;5T RRA3,T MGE| RRA;5T RRA3,T MGE| RRA 5T RRA30T

% SIFT [9] 0.0 1000 1000 214 915 941 426 708  79.1
S LoFTR[I13] 0.1 1000 1000 184 986 996 247 90.6 966
3 SIFT [9] 036 961 982 498 670 720 951 578 680
S LoFTR[I3] 048 1000 1000 258 944 984 557 777 926
9 SIF* [9] 97.94 362 381 14022 0.0 18 15233 32 6.4
S LoFTR [13] - - - 1410 60.0  100.0

Table 2. Homography-based estimation for feature-based tech-
niques. We evaluate performance over the sELP and wELP test
sets, separately considering Large (top), Small (middle) and Non-
overlapping (bottom) pairs. Note that median errors are computed
only over successful image pairs, for which these algorithms out-
put a pose estimate (failure over more than 50% of the test pairs is
shown in gray).

parameters, the keypoints are adjusted so that their intrinsic
camera parameters are represented by an identity matrix for
essential matrix calculation. Essential matrix is then calcu-
lated using RANSAC confidence = 0.999, threshold = 0.01.
Finally, the pose is recovered from the essential matrix and
the valid matched key points. The success rates for large,
small, none categories for sELP test set: 91.4%, 58.6%,
5.7% and for wELP test set: 65.6%, 43.2%, 7.7% .

LoFTR The LoFTR pipeline also utilizes the OpenCV
Python library, and the default random number generator
is initialized with the seed value 12345. Images are resized
so that their largest dimension is 256, and their intrinsic ma-
trices are adjusted accordingly. Key points and descriptors
for both grayscale images are detected using the LOFTR
pretrained model(’outdoor_ds’). Image pairs with less than
20 matches are filtered. Since image pairs can have differ-
ent intrinsic camera parameters, the keypoints are adjusted
so that their intrinsic camera parameters are represented by
an identity matrix for essential matrix calculation. Essen-
tial matrix is then calculated using RANSAC confidence =
0.999, threshold = 0.01. Finally, the pose is recovered from
the essential matrix and the valid matched key points. The
success rates for large, small, none categories for sELP test
set: 97.0%, 39.0%, 0.0% and for wELP test set: 82.9%,
33.3%, 0.46% .

In Table 2 in the main body of the paper, we followed
prior works to calculate the essential matrix for SIFT and
LoFTR. We also conducted an experiment to evaluate these
methods using homography, with the results presented in
Table 2. We observe that homography-based estimation
yields improvements over the StreetLearn dataset where
over our real-world test sets, the transformation appears to
cause distruptions, as evidenced by the increase in the MGE
of SIFT for Large overlap from 2.1° to 2.5° in wELP.

8PointViT The 8PointVit pipeline uses the 'streetlearn’ pre-
trained model. Images are cropped around the center to a
square dimension and resized to (256,256). The pose is then
evaluated using the 8PointVit network.

ExtremeRotation The ExtremeRotation pipeline uses the
‘streetlearn_cv_distribution” pretrained model. Images are
cropped around the center to a square dimension and resized
to (256,256). The relative Euler angles are then evaluated
using the classification network.

CascadedAtt Since the model of CascadedAtt[4] was not
released, we compare to it by directly implementing its en-
coder using weight-sharing Siamese residual U-nets, fol-
lowed by cross-decoding with a weight-sharing transformer.
These features are concatenated with Euler angle posi-
tion embeddings and processed by our Rotation Estima-
tion Transformer module, with the output rotation repre-
sented as relative Euler angles. We compare performance
on the Streetlearn dataset evaluated in their work, finding
that our re-implementation is mostly comparable, achieving
only slightly lower MGE scores.

Dust3R The checkpoint utilized was the 512 DPT head,
which yielded superior outcomes compared to the Dust3R
checkpoints. The optimization technique that led to the pose
estimation is PnP RANSAC. The pair is fed into the model
in two instances, with their positions reversed in each case,
resulting in two separate estimations of relative rotation.
The chosen relative rotation is the one associated with the
greatest confidence score, which is determined by the prod-
uct of the average values from the pair’s confidence maps.

3. Additional Results and Visualizations
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Figure 3. Histograms over the yaw, pitch and relative ro-
tation errors. As illustrated above, yaw errors contribute signifi-
cantly to the total error count. As detailed in [3], these yaw errors
typically signify the uncertainties associated with non-overlapping
pairs. Notably, the error peaks tend to occur at intervals that are
multiples of 90 degrees.

Evaluation on Images Cropped from Panoramas. In
Table 3, we conduct an evaluation over panoramic perspec-
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Large Small None
Method MGE l RRA10 T MGE i RRAIOT MGEl, RRAlU T

DenseCorrVol [3]  1.09 99.4 1.41 98.3 1.53 964
CascadedAtt [4] 142 100.0 1.89 983 206 962
8PointViT [11] 0.52  100.0 1.07 1000 101.51 6.0
Ours 1.06  100.0 1.09  100.0 1.98  96.4

Table 3. Evaluation on Images Cropped from Panoramas. We
compare results over the Streetlearn panoramas test set, first re-
ported in Cai et al. [3]. Note that all models (including ours) were
trained on the same data; for this comparison, we report the per-
formance of the model obtained after the initialization stage.

tive images, using the training and test set reported in prior
work [3, 4]. Note that all models are trained and evalu-
ated on StreetLearn [10] images; no data augmentations or
additional data sources are used for this evaluation. As il-
lustrated in the table, our model yields comparable perfor-
mance over such constrained image pairs, achieving state-
of-the-art relative rotation accuracy for non-overlapping
pairs, matching the performance reported in prior work.

Top 5 Another measure used in this paper is Top 5, where
output rotation matrix is selected from the best of 5 picks
in the 360-D yaw angle output (and the topl pick for pitch
and roll). Figure 3 shows the geodesic error histograms for
each relative rotation angle. The analysis reveals that yaw
errors contribute significantly to the total error count. As
detailed in [3], these yaw errors typically signify the uncer-
tainties associated with non-overlapping pairs. Notably, the
error peaks tend to occur at intervals that are multiples of
90 degrees.

In Figure 4, we demonstrate the top-5 predictions of our
model for several non-overlapping pairs from the wELP test
set with high geodesic top-1 errors. To identify the Top 5
predictions, we start with the 360-D yaw angle output, and
apply a softmax function to it. Next, we smooth the distri-
bution by applying a Gaussian kernel on it (using a standard
deviation of 5). Finally, we locate the top 5 local maximas
on the smoothed output.

We also examined the behavior of our model on pairs
sampled from entirely different places. We conducted an
experiment over 200 such image pairs, sampled from dif-
ferent scenes. Their histogram (Figure 5) reveals that the
overall angle spans almost the entire range, with a notice-
able tendency to larger angles (the overall angle of 64.5%
of the pairs is above 90 degrees).

4. Additional Ablations

We report results over the sELP test set for the ablations
discussed in the main paper. Table 4 shows the effect of our
progressive training scheme, while Table 5 demonstrates the
impact of adding additional channels. As illustrated, these
results are consistent with the results reported in the main
paper over the wELP test set. Next we provide additional

Figure 4. Visualizing the top-5 predictions for non-overlapping
pairs with high geodesic top-1 errors. As illustrated by the ex-
amples above and also in our quantitative ablations, valuable in-
sights can be found not only in the top predictions, but also among
the subsequent selections. Images on the left serve as the reference
points, and their coordinate system detemines the relative rotation,
which defines the images on the right. The ellipsoids representing
the ground truth are color-coded to match their respective images,
with the estimated relative rotation illustrated by a cyan dashed
line.

Figure 5. Histogram of overall angle estimation of 200 ran-
domly sampled image pairs from different scenes.

ablations which further ablate various design considerations
and our progressive training scheme.

4.1. The impact of our progressive training scheme

To further evaluate the efficacy of our progressive training
approach, we compared it to training on all pairs simulta-
neously. We used a pre-trained model initially trained on
panoramic images with a 90 degree field of view (FoV). All-
at-once model (indicated by V was then further trained on
a combined dataset comprising AFoV, Alm, and Extreme-
LandmarkPairs training sets, using three separate batches
for each dataset. The results are presented in Table 4, and
demonstrate that our progressive training approach is par-
ticularly beneficial in challenging scenarios, such as when
there is no overlap with a single camera (sELP test set), and



Top 1 Top 5
Overlap AFoV Alm ELP MGE| RRA;5T RRA3, T MGE] RRA ;5T RRA3,T

Large X X X 8.17 86.4 97.1 8.17 875 98.1

\% v v 287 9717 98.8 282 99.2 99.8

v X X 318 982 98.2 321 979 98.7

v voox 310 994 99.5 4.04 985 98.9

v v o voo245 967 96.8 244 968 97.0

Small X x X 2644 63 60.2 2232 174 69.5

N \ v v 572 877 92.1 556 92.6 97.7
= v x X 514 798 82.6 524 855 92.1
- v v ox 591 83.9 88.4 584 883 95.5
v v v 435 883 89.0 415 916 93.7

None X x x 7663 179 329 17.54 420 78.9

\ VoV 2392 415 522 11.51 647 87.7

v x X 2822 424 49.7 10.52  71.0 90.8

v v x 1420 501 60.1 9.76 727 92.6

v v oo v 13.62 527 59.7 925 754 93.6

Large X x X 1365 354 73.5 1222 614 84.7

\ v v o 276 970 98.2 272 979 99.6

v x x 461 797 81.1 441 903 98.9

v voox 446 904 92.4 443 943 99.1

v v o v o241 975 97.9 241 984 99.4

Small X x x 5528 37 29.1 29.83 150 50.3

N \ vV vV 646 819 90.1 599  86.1 97.7
g v x x 1291 562 68.2 10.97  66.0 85.4
= v v x 1146 625 80.6 10.73  68.0 91.0
v v v 447 872 91.6 424 911 97.2

None X x x 7494 128 25.3 25.11  26.1 58.8

\ V.oV 6574 241 37.7 1673 45.1 72.6

v x x 6162 250 38.4 16.82 442 75.0

v v x 6831 250 36.1 1621 457 78.2

v v v 2697 361 50.7 1285 57.1 85.8

Table 4. Ablation study, evaluating the effect of our progressive
training scheme over the two test sets (SELP in the top rows, and
wELP in the bottom rows). All experiments start with the cropped
panoramas used in Cai et al. [3]. We also assess the necessity of
the progressive training scheme compared to training on all pairs
simultaneously. Comparison denoted with V is training with all of
the datasets together. Best results are in bold.

for the wELP test set. This method helps the model gradu-
ally adapt to the diverse challenges posed by real-world im-
ages. Another interesting finding from this ablation is the
improved generalization capabilities of our model, trained
only on 90 degrees FOV panorama perceptive images, in
comparison to prior work [3] for in-the-wild image pairs.
This result supports our decision to switch to a LoFTR en-
coder that was trained on Internet images, which could nar-
row the disparity between real-life images and panorama
crops.

To assess the contribution of our components, we con-
ducted an ablation study removing both InstructPix2Pix
and SegFormer networks (Table 6), finding that results
are slightly worse in this case. For example, for non-
overlapping pairs the MGE is 46.08°. Importantly, even
without these additional cues, our method still outperforms
the baselines in the challenging no-overlapping scenario,
demonstrating that while these networks do enhance our re-
sults, our improved performance is not solely dependent on

Top 1 Top 5
Overlap KP SM MGE| RRA;5T RRA3, T MGE| RRA;5T RRA3)T

227 979 98.4 227  98.0 98.6
231 96.8 97.1 228  98.0 99.0
240 995 99.7 240 995 99.8
245 967 96.8 244 96.8 97.0
1272 91.1 92.7 456 940 97.1
407 878 89.1 400 918 96.1
4.04 929 93.8 4.00 96.3 98.8
435 883 89.0 415 916 93.7
2285 429 51.0 1048  66.6 86.6
16.41 479 54.5 10.26  68.7 85.5
12,92 55.0 63.2 9.43 768 95.3
13.62 527 59.7 925 754 93.6
218 974 98.1 218 974 98.1
230 970 97.4 230 985 99.4
244 97.6 98.3 231 984 99.7
241 975 97.9 241 984 99.4
450 879 91.6 450 879 91.7
449  88.1 92.0 446 912 96.7
441 875 92.2 432 919 97.6
447 872 91.6 424 91.1 97.2
48.81  34.0 44.1 12.56 575 84.6
43.07 312 44.2 13.99 535 83.2
4139 353 46.8 13.04 569 86.2
26.97 36.1 50.7 1285 57.1 85.8

Large

Small

SELP

None

Small

wELP

None

AX AX X A X SO X XX SO X SO X X S X N X

X
X
v
v
X
X
v
v
X
X
v
v

Large X
X
v
v
X
X
v
v
X
X
v
v

Table 5. Ablation study, evaluating the effect of the auxiliary chan-
nels added as input to our network. We train models without the
keypoints and matches (KP) and without the segmentation maps
(SM), and compare with our full model that is provided with both.

Top 1 Top 5
Overlap AIm SM MGE| RRA 5T RRA3; T MGE| RRA 5T RRA3T

Large X x 243 973 98.1 234 98.0 99.5
X v 240 97.6 98.1 239 985 99.4
v x 244 976 98.3 231 984 99.7
v v 241 975 97.9 241 984 99.4
Small  x x 464 867 90.6 444 903 97.2
X v 450 872 92.0 434 913 97.8
v x 441 875 92.2 432 919 97.6
v v 447 872 91.6 424 91.1 97.2
None X x 46.08 354 46.1 1335 558 83.8
X v 40.01 36.1 50.2 1321 563 84.4
v x 4139 353 46.8 13.04 569 86.2
v v 2697 36.1 50.7 12.85 571 85.8

Table 6. Ablation study, evaluating the effect of the priors of heavy
neural networks - InstructPix2Pix and SegFormer.

these additional cues.

To demonstrate that the improved performance cannot be
simply obtained with the ExtremeLandmarkPairs training
set, we report performance obtained without training on im-
ages cropped from panoramas in Table 7. We also compare
performance to models trained on multiple stages of our
progressive training scheme, followed by training on the Ex-
tremeLandmarkPairs dataset as the final step. As illustrated
in Table 7, relying solely on real image pairs from the ELP



Top 1 Top 5
Overlap [3] AFoV AIm MGE]| RRA 57 RRA3; T MGE| RRA 5T RRA3;T

Large x X x 11.89  63.8 97.3 11.28 68.3 98.8
v x 312 989 99.5 296  99.2 99.6

v Vv x 242 963 96.4 242 964 96.7

v v o v 245 967 96.8 244 96.8 97.0

Small  x X x 3739 144 36.9 18.61 389 715

A voox x 634 830 89.6 584 883 96.4
2 v v x 439 813 88.4 424 909 93.5
v v v 435 883 89.0 415 916 93.7

None x X x 10720 55 135 2331 295 63.3
v x 2426 376 53.8 1229 613 84.8

v v x 1458 508 58.4 947  74.6 93.2

v v v 1362 527 59.7 925 754 93.6

Large x X x 1007  69.5 95.9 947  75.1 98.7
Voo x 335 942 96.5 318 952 97.5

v v x 240 976 98.1 2.39 985 99.4

v v o v 241 975 97.9 241 984 99.4

Small x X x 3026 215 493 1439 522 83.6

Ay Voo X 948 678 83.7 834 727 90.8
= v v x 450 872 92.0 434 913 97.8
v v v 447 8712 91.6 424 91.1 972

None x X x 7544 48 188 2358 26.0 63.1
v x 4877 24.1 39.3 1643  46.7 79.9

v v ox 2974 361 502 1321 563 84.4

v v v 2697 361 50.7 12.85 57.1 85.8

Table 7. We evaluate to what extent the progressive training
scheme is needed, in contrast to simply training on real image
pairs. In the first rows (three x’s), we train models on Extreme-
LandmarkPairs only. In the rows below, we first train on the
panoramas, according to our progressive training scheme. As il-
lustrated above, training on panoramas, along with the various data
augmentations we propose, significantly improve performance,
particularly for non-overlapping image pairs.

Large Small None
Method MGE] RRA;9T MGE| RRA;qT MGE] RRA;( 1
Ours w/oLT 098 1000 1.06 98.7 2.61 87.7
Ours 1.06 1000 1.09 1000 198 96.4

Table 8. Network Architecture Ablation. We evaluate the im-
pact of the learnable tokens (LT) added to our model, comparing
performance over the StreetLearn dataset. Best results are in bold.

train set yields significant performance degradation, par-
ticularly for extreme scenarios. Initialization with images
cropped from panoramas improves performance. In particu-
lar, for large overlap on the SELP test set, it achieves the best
RRA percentages. However, as overlap between the im-
ages decreases, the errors remain relatively high. Our data
augmentations allow for further improving performance, by
creating diverse perspective images that better resemble the
real samples.

sELP wELP

Method MGE] RRA;5T RRA3;T MGE] RRA;; T RRAj3,T
gﬂ DenseCorrVol [3] 440  86.3 91.7 5.21 74.5 82.3
5 Ours 241  96.1 96.1 241 97.5 97.9
= DenseCorrVol [3] 154 492 59.2 6354 222 32.1
UE, Ours 427 874 88.4 447 872 91.6
& DenseCorrVol [3] 103.97 179 294 9546 112 19.0
2 Ours 1416 514 584 2697 36.1 50.7

Table 9. Finetune baseline with AIm and AFoV. We evaluate
performance over the sELP and wELP test sets, separately consid-
ering Large (top), Small (middle) and Non-overlapping (bottom)
pairs.

4.2. Architectural Ablations

We conduct an ablation to evaluate the impact of using
learnable tokens. As illustrated in Table 8, the performance
without learnable tokens significantly deteriorates for non
overlapping pairs. Specifically, RRA;o decreases from
96.4% to 87.7% and the median increases from 1.98 to 2.61.
We further investigated architectural differences through
an additional ablation where we applied our progressive
training scheme to the baseline models (Table 9). This ex-
periment further shows that prior models are not directly
applicable for real-world settings, as these baselines per-
form significantly worse across all metrics, particularly for
Small and Non-overlapping cases. For instance, DenseCor-
rVol yields a MGE of 63.54° (Small) and 95.46° (None).
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