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1. Bias Calculations
As noted in Fig. 1 and Sec. 4 of the main paper, the single-
photon estimator is unbiased and the naive estimator has a
positive bias. Here, we analytically derive these results.

1.1. Naive Estimator
For a given readout frame (Rt, Ct), the naive estimator im-
putes a photon count to pixel (i, j) when there is a detection
at (i, j) (with probability qij) or when detections occur in
row i and column j, but not at pixel (i, j). The probability
of the latter is
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Therefore, the bias of the naive estimator is
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1.2. Single-Photon Estimator
As defined in (7), the single-photon estimator is
Nij/(Nij +N0) if Nij + N0 > 0 and 0 otherwise. Here,
Nij is the number of frames with a single detected photon
at pixel (i, j), and N0 is the number of frames with no de-
tected photons at the array. We show this estimator to be
unbiased when Nij + N0 > 0. The expected value of the
estimate is
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where (a) follows from the law of iterated expectation
and (b) follows from the fact that Nij | (Nij + N0) ∼
Binomial(Rij/(R0 +Rij), Nij +N0) with
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2. General Form of the Multiphoton Estimator
The likelihood of all photon incidence frames {Y t}Tt=1 is
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is the probability mass function (PMF) of a photon inci-
dence indicator. If we observe {Y t}Tt=1, then the maximum
likelihood estimator of q is
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With row–column readouts {(Rt, Ct)}Tt=1, a frame may be
ambiguous, i.e., a readout (Rt, Ct) can arise from many
possible photon incidence events. Let A : (Rt, Ct) 7→ Yt

be a mapping from a row–column readout to a set of pos-
sible photon incidence indicators. For example, in a 2 × 2
detector array,
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as illustrated in Fig. 2. The probability of a readout (Rt, Ct)
is the sum of the probabilities of all possible photon inci-
dence indicators. The PMF of a readout is

pR,C(r, c; q) =
∑

Y ∈A(r,c)

pY (Y ; q). (23)



The likelihood of all row–column readout frames is

L(q; {(Rt, Ct)}Tt=1) =

T∏
t=1

pR,C(R
t, Ct; q). (24)

Maximizing the likelihood (24) is computationally difficult
because the ambiguous frames render the log likelihood
nonconcave with respect to q. Instead of maximizing the
photon incidence likelihood (24), the ME maximizes its ap-
proximation by distributing each ambiguous readout to pos-
sible photon incidence events according to q̂single. Let the
approximate likelihood be
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approximates the probability of Y given a row–column
readout (r, c). For example, in a 2 × 2 array as demon-
strated in Fig. 2, there is only one type of ambiguous readout
with Rt = [1, 1] and Ct = [1, 1] corresponding to events
E9, . . . , E15. Maximizing the approximate likelihood (25)
becomes similar to estimating q from the photon incidence
indicators {Y t}Tt=1 as in (21). The ME is therefore
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Intuitively, the ME estimates q from a dataset of photon in-
cidence indicators ∪T

t=1A(Rt, Ct) synthesized from pos-
sibly ambiguous row–column readouts {(Rt, Ct)}Tt=1. In
the estimator, each synthesized photon incidence indicator
Y ∈ A(Rt, Ct) is weighted according to the probability
that it arises from the readout (Rt, Ct) according to a pre-
liminary estimate q̂single.

3. Bias–Variance Decomposition of MSE
Fig. 4 shows the MSE as a function of mean PPF of the
naive, single-, and multiphoton estimators. To better under-
stand their behaviors, here we study the explicit change of
bias and variance of each of the estimators as functions of
mean PPF. Fig. 9(a) shows that the bias of the SPE is 0
across the range of PPF values, while the naive estimator
has a large positive bias. The multiphoton estimator has a
small negative bias that decreases as the number of photons

(a) Bias

(b) Variance

Figure 9. Change in bias and variance of the naive, single-photon,
and multiphoton estimators as functions of mean photons per
frame.

modeled by the estimator increases. This negative bias is
due to the multiphoton estimator imputing at most 4 coin-
cident photons to ambiguous readouts that may have been
produced by more coincident photons. Fig. 9(b) shows that
the variance of the SPE is high, especially at high incident
photon fluxes. This is expected since the SPE discards all
ambiguous readouts, which have high probabilities of oc-
currence in the high incident flux cases. The ME achieves
the lowest variance of the three estimators.

4. Fisher Information Matrix Calculation

The Cramér–Rao bound in Fig. 7 is obtained by averaging
over the diagonal elements of the inverse of the Fisher in-
formation matrix, which is derived using the log-likelihood
expression for row–column readouts. Here, we provide an



explicit derivation of the entries in the FIM for a 2×2 array.
The number of readout frames of each type M0, . . . ,M9

can be modeled as

(M0,M1, . . . ,M9) ∼ Multinomial(r0, r1, . . . , r9, T ),
(29)

where T is the number of measured frames and r0, . . . , r9
are the probabilities of events E0, . . . , E9 given by

r0 = (1− q11)(1− q12)(1− q21)(1− q22),

r1 = (q11)(1− q12)(1− q21)(1− q22),

r2 = (q12)(1− q11)(1− q21)(1− q22), . . . ,

r9 = (q11q22 + q12q21 − q11q12q21q22).
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Further, for a 2× 2 array, the expressions for vij and fij in
the likelihood expression (10) are

v11 = M0 +M2 +M3 +M4 +M7 +M8,

f11 = M1 +M5 +M6,

v12 = M0 +M1 +M3 +M4 +M6 +M8,

f12 = M2 +M5 +M7,

v21 = M0 +M1 +M2 +M4 +M5 +M7,

f21 = M3 +M6 +M8,

v22 = M0 +M1 +M2 +M3 +M5 +M6,

f22 = M4 +M7 +M8.

(31)

The Fisher information matrix of size 4×4 is then calculated
as
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where L′ = log(L). Consider I11. First,
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Since M0, . . . ,M9 are multinomial random variables,
E[Mi] = Tri. Thus, taking the negative expectation of (34)
and simplifying gives
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Following a similar procedure, the remaining entries of the
first row are
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Similar expressions are derived for all the entries in the
Fisher information matrix.

The CRB curve in Fig. 7 is obtained using the mean of
the diagonal elements of I−1. This curve and the MSEs of
the estimators depend on the chosen ground truth Λ. We il-
lustrate this with three additional examples beyond the case
shown in Fig. 7. When the ground truth has high flux at
only two pixels, the 2-photon estimator matches the CRB
closely across the range of PPF values studied as seen in
Fig. 10 (middle). This ground truth would mean that most
ambiguous readouts arise from two-photon events. Thus,
a 2-photon estimator reconstruction should closely match
the ground truth. However, when the ground truth has high
flux at three pixels as in Fig. 10 (right), this model misat-
tributes photon counts to just two pixels (due to the rejec-
tion of three- and four-photon terms in (13)) resulting in a
biased reconstruction.

5. Additional Comparisons
Here, we compare the performance of the ME with three
additional baselines. The randomized assignments method
is a modification of the NE where instead of imputing pho-
ton counts to every candidate pixel where photon incidence
could have occurred, the estimator randomly picks one so-
lution from the set of possible photon incidence locations.
This leads to a decrease in the bias of the NE, as seen in the
increase in PSNR in Fig. 11.

Multiphoton events occurring along the same row or
same column are unambiguous as noted in Sec. 3. We can
define a multiphoton unambiguous estimator that improves
upon the SPE by discarding only ambiguous multiphoton
events. Since this estimator uses more of the measured data
and is unbiased, we expect its variance to be lower than the
SPE. This is reflected in the increased PSNR value of re-
constructions shown in Fig. 11.

Finally, we provide comparisons against a full readout
which is free from ambiguities. We expect this model to
only contain Poisson noise and hence have the best recon-
struction among the methods we compare.

It can be seen that across the baselines considered, our
multiphoton estimator achieves the highest reconstruction
PSNR.



Figure 10. Dependence of estimator performance on the ground truth image. The 4-photon estimator closely matches the 3-photon
estimator in these cases.

Figure 11. Comparison of the NE, SPE, and ME with full readout, multiphoton unambiguous estimator, and random assignments method.


