
Supplementary Material: Potential Field Based Deep Metric Learning

In this supplementary material, we provide additional information which we could not fit in the space available in the
main paper. We do so in six sections: Sections 1 & 2 contain proofs for Proposition 1 and Corollary 1 respectively; Section
3 contains additional empirical studies that further validate the effectiveness of our method ( Sec. 3.1: using a smaller
embedding size, Sec. 3.2: Results when using the MLRC protocol [9]); Section 4 provides implementation details about
the hyperparameters used; Section 5 empirically compares the time complexity of our method with other methods; Section 6
provides qualitative retrieval results and a t-sne visualization of the embedding space learned by PFML.

1. Proof of Proposition 1
Proposition 1:Let Z = {z1 . . . zn} be a set of sample embeddings belonging to a class, then there exists a 0 < δ <
mini,j ∥zi − zj∥2

2
(
1 + 1

n

) and a distance zmin,i ≤ δ for each embedding zi, i ∈ {1 . . . n} such that the attractive potential field

Ψatt ( Eq. 4 from paper ) defined using (Z, δ) when restricted to a radial line from zi has a minimum at each zmin,i. The
field Ψ∗

att (by CPML, the interaction strength increasing potential defined in Eq. 2) defined by Z does not achieve such a
minimum at points within δ distance from all zi.
Proof: We first define the potential field at point z caused by an individual embedding zi, ψatt(z, zi) and ψ∗

att(z, zi) are
defined as:

ψatt(z, zi) :=


− 1

δα
if ∥z − zi∥2 < δ

− 1

∥z − zi∥α2
otherwise.

(1)

ψ∗
att(z, zi) :=

{
δ2 if ∥z − zi∥2 < δ

∥z − zi∥22 otherwise.
(2)

The potential fields created by all data points are:

Ψatt(z) =
n∑

i=1

ψatt(z, zi) (3)

Ψ∗
att(z) =

n∑
i=1

ψ∗
att(z, zi) (4)

We prove the proposition in two parts, first proving the assertion for Ψatt(z) in Part 1, and then moving on to proving the
assertion for Ψ∗

att(z) in Part 2.

1.1. Part 1: Proof for Ψatt(z)

To prove that Ψatt(z) achieves a minimum in the radial direction at a distance zmin,i ≤ δ distance of each embedding zi, we
observe that Ψatt is continuous and bounded within the δ hyper-spheres Si = ∥z − zi∥ ≤ δ. Each hypersphere is a closed
bounded set.

This enables us to apply the Extreme Value Theorem (EVT) [20] to Ψatt on Si. Using EVT, we note that Ψatt achieves a
minimum Ψatt(z∗) on the set Si at some distance zmin,i.
zmin,i may either be < δ (minimum inside the sphere) or = δ (minimum on the boundary). We analyze both cases

separately, proving that the minimum for Ψatt, zmin,i on Si is also a minimum for Ψatt on the embedding space RD (D =
embedding dimension):
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Case 1: If minimum z∗ lies inside the sphere Si, then zmin,i is a minimum for Ψatt on RD too because Si ⊂ RD (D =
embedding dimension).
Case 2: If zmin,i = δ (minimum z∗ lies on the border of sphere Si). The proof for this intuitively relies on the fact that the
derivative of the potential field of zi (ψatt(z, zi)) outside Si, around z∗ is positive, and the derivative (i.e., interaction strength
or force) increases as we choose a smaller δ. Consequently, the derivative of the potential field of zi dominates the force
applied at z∗ compared to the force applied by potentials of other embeddings (which would have decayed). Hence, with a
small enough delta, it is possible to ensure that the potential at points outside Si is larger than the one on the boundary.

To formally handle this case, we first define Ψatt|Ri
as the restriction of Ψatt to the line Ri = {zi + t z∗ | t ∈ R}. Then

by the definition of a local minimum
z∗ is a minimum of Ψatt|Ri

iff there exists an ϵ > 0 such that Ψatt|Ri
(z∗) ≤ Ψatt|Ri

(z
′
) for all z

′ ∈ Ri. We note that for
any z

′ ∈ Si, Ψatt|Ri
(z∗) ≤ Ψatt|Ri

(z
′
) is trivially true by the definition of z∗. For z

′
/∈ Si, we use the Taylor expansion of

Ψatt|Ri to find such an ϵ and prove that such a z∗ is also a minimum for Ψatt|Ri in RD .
Specifically, the Taylor expansion for Ψatt in the radial direction (co-ordinates centered at zi) is given as:

Ψatt|Ri
(z

′
) = Ψatt|Ri

(z∗) + ( z
′
− z∗).

(
∂Ψatt|Ri

∂z′

∣∣∣∣
z∗

r̂

)
+ err(z

′
− z∗) (5)

here r̂ is the unit radial vector pointing toward z∗ centered at zi (6)

Expanding the partial derivative, we get:

∂Ψatt|Ri

∂z′ =

n∑
i=1

∂ψatt(z
′
, zi)|Ri

∂z′ (7)

Evaluating it at z∗, we get:

∂Ψatt|Ri

∂z′ (z∗) =
α

∥z∗ − zi∥α+1
2

+ γi

∂Ψatt|Ri

∂z′ (z∗) =
α

δα+1
r̂+ γi

where γi =
n∑

j=1,̸=i

∂ψatt(z
′
, zi)|Ri

∂z′

Now
α

δα+1
> γi for all δ <

(
α

γi

) 1
α+1

. So,

( z
′
− z∗).

(
∂Ψatt|Ri

∂z′

∣∣∣∣
z∗

r̂

)
= ∥z

′
− z∗∥

( α

δα+1
+ γi

)
> 0 ∀δ <

(
α

γi

) 1
α+1

(8)

Also, as ϵ→ 0,
err(z

′ − z∗)

( z′ − z∗).
(

∂Ψatt|Ri

∂z′

∣∣∣
z∗

r̂
) → 0 as those are higher order terms.

Simplifying the Taylor expansion (Eq. 5)

Ψatt|Ri
(z

′
)−Ψatt|Ri

(z∗) = +( z
′
− z∗).

(
∂Ψatt|Ri

∂z′

∣∣∣∣
z∗

r̂

)
+ err(z

′
− z∗)

= ( z
′
− z∗).

(
∂Ψatt|Ri

∂z′

∣∣∣∣
z∗

r̂

)
as ϵ→ 0

∴ Ψatt|Ri
(z

′
)−Ψatt|Ri

(z∗) > 0 (Using Eq. 8) (9)
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So for z
′
/∈ Si, Ψatt(zmin,i) ≤ Ψatt(z

′
) for all ∥z

′ − z∗∥ < ϵ.

Therefore, by definition z∗ is a minimum of Ψatt|Ri
on RD in Case 2 too.

Hence, Ψatt when restricted to a radial line from zi has a minimum at a distance zmin,i ≤ δ from zi∀i ∈ {1 . . . n} for

δ < argmini

(
α

γi

) 1
α+1

. zmin,i lies within δ distance of the embeddings zi by definition of the hyperspheres Si.

1.2. Part 2: Proof for Ψ∗
att(z)

Outside the hyperspheres Si = ∥z − zi∥ ≤ δ, ∇Ψ∗
att(z) (z /∈ Si)is given by:

∇Ψ∗
att(z) =

n∑
i=1

∇ψ∗
att(z − zi)

∇Ψ∗
att(z) =

n∑
i=1

2(z − zi) = 2nr −
n∑

i=1

2zi = 2n

(
z −

n∑
i=1

zi
n

)
(10)

It achieves a single minimum at zglobalmin =

∑n
i=1 zi
n

.
Now define differentiable extensions of the potentials-

ψ∗∗
att(z − r0) = ∥z − r0∥22 (11)

To calculate ∇Ψ∗
att(z) inside the hyperspheres (r ∈ Si), we note that no two hyper spheres Si intersect with each other as

δ < 0.5mini,j ∥zi − zj∥2. Observing that for r ∈ Si

∇Ψ∗
att(z) =

n∑
j=1,j ̸=i

∇ψ∗∗
att(z − zj)

Using triangle inequality for z ∈ Si:

∥
n∑

j=1

∇ψ∗∗
att(z − zj)∥ − ∥∇ψ∗∗

att(z − zi)∥ ≤ ∥
n∑

j=1,j ̸=i

∇ψ∗
att(z − zj)∥ = ∥∇Ψ∗

att(z)∥

Using ∥∇ψ∗∗
att(z − zi)∥ ≤ 2δ (from Eq. 11)

∥∇Ψ∗
att(z)∥ ≥ ∥

n∑
j=1

∇ψ∗∗
att(z − zj)∥ − 2δ

We know that the RHS term > 0 because ∥
∑n

j=1 ∇ψ∗∗
att(z − zj)∥ > 2δ for

∥z −
n∑

i=1

zi
n
∥ > δ

n
(12)

using Equation 10. For all such z:

∥∇Ψ∗
att(z)∥ > 0 (13)

At most one sphere Si has an ri ∈ Si not satisfying Equation 12. We prove this by contradiction. Assume that another sphere
Sj has rj ∈ Sj not satisfying Equation 12. Now the distance between ri and rj satisfies:

∥ri − rj∥ ≥ dmin − 2δ (14)

here dmin = min
i,j

∥zi − zj∥2 Using the fact that δ <
dmin

2
(
1 + 1

n

) by definition and substituting for dmin in equation 14 we

get:

∥ri − rj∥ > 2δ

(
1 +

1

n

)
− 2δ

∥ri − rj∥ >
2δ

n
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Both i and rj cannot satisfy equation 12 as all points satisfying it lie within a sphere of radius δ
n , and distance between ri, rj

is more than the maximum distance between points in a sphere, that is 2 δ
n . Hence, no such rj ∈ Sj can exist.

Hence for any other hypersphere Sj , i ̸= j, for all z we have ∥∇Ψ∗
att(z)∥ > 0, and hence no minimum exists within them.

Hence, proved.

2. Proof of Corollary 1
Corollary 1: Let Z = {z1 . . . zn} be a set of sample embeddings belonging to a class exerting an attraction field on a set
of proxies P = { p1 . . . pm}. Consider the equilibrium distribution Peq of proxies minimizing the potential energy. If the
potential field is defined by Ψatt, then the Wasserstein distance W2 between Peq and the subset of data they represent is lower
than when the potential field is defined by Ψ∗

att.
Proof: Let the potential fields Ψatt and Ψ∗

att be given by Equations 3 and 4 respectively.

ψtotal(r) =
n∑

i=1

ψ(r − zi) (15)

where ψ is defined using Eq 4 from the paper(att and class subscript j omitted for clarity). The potential energies of the proxy
distribution Peq in these potential fields, Uproxy and U∗

proxy respectively are given by :

Uproxy =
∑

pi∈Peq

Ψatt(pi)

U∗
proxy =

∑
pi∈Peq

Ψ∗
att(pi)

At equilibrium, each proxy migrates to the nearest minimum in the field. The subset of data the proxies represent are given
by the subset of m data points Zsubset = zf(k), k ∈ {1 . . .m};Zsubset ⊂ Z which is the closest in Wasserstein distance W2

from the proxies.
Case 1: Let the field be defined by Ψatt. Assumptions: As the distances of proxies pk, k ∈ 1 . . .m from embeddings

zi are minimized, we assume that they migrate to a distance of dmin,f(k) from the nearest embedding in the potential field
denoted by zmin,f(k) which is located within δ distance of data point zf(k) ( using proposition 1 ). Assuming that the proxies
are initialized using a normal distribution (commonly used) and m << n, which is typically true, we ignore the probability
of more than one proxy going to the same minimum zmin,f(k) (so f(k) is one-one). Therefore:

W2(Peq, Zsubset) = inf
π

(
1

m

m∑
k=1

∥pk − zπ(k)∥2

)
here the infimum is over all permutations π of k elements

W2(Peq, Zsubset) =

(
1

m

m∑
k=1

∥zmin,f(k) − zf(k)∥2

)
Using proposition 1

W2(Peq, Zsubset) ≤
(

1

m
× (mδ)

)
W2(Peq, Zsubset) ≤ δ (16)

Hence when the field is defined by Ψatt we have W2(Peq, Zsubset) ≤ δ.
Case 2: Let the field be defined by Ψ∗

att. The proxies pk, k ∈ 1 . . .m migrate to the nearest minimum in the potential field
denoted by zmin,f(k). Using Proposition 1 proved before, we know that all minima satisfy min

j
∥zmin,f(k) − zj∥ > δ for all

j except at most one j = j′ for which let k = k′.

First, we prove the corollary for the case if there exists such a j = j′. Let zg(k), k = {1 . . .m} represent the ordered
subset of data embeddings that minimize the W2 distance metric with the proxies pk ∈ Peq . From proposition 1, we know
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that:

∥zmin,f(k) − zj′∥2 ≤ δ

(17)

we also have:

∥zg(k) − zj′∥2 ≥ min
i,j

∥zi − zj∥2 ≥ 2δ

(
1 +

1

m

)
(18)

Using the triangle inequality on the above 2 inequalities and substituting, we get:

∥zmin,f(k) − zg(k)∥2 ≥ ∥zg(k) − zj′∥2 − ∥zmin,f(k) − zj′∥2

∥zmin,f(k) − zg(k)∥2 ≥ 2δ

(
1 +

1

m

)
− δ

∥zmin,f(k) − zg(k)∥2 ≥ δ +
2δ

m
(19)

The W ∗
2 distance is given by:

W ∗
2 (Peq, Zsubset) = inf

π

(
1

m

m∑
k=1

∥pk − zπ(k)∥2

)
here the infimum is over all permutations π of k elements

W ∗
2 (Peq, Zsubset) =

(
1

m

m∑
k=1

∥zmin,f(k) − zg(k)∥2

)

W ∗
2 (Peq, Zsubset) =

 1

m

m∑
k=1,k ̸=k′

∥zmin,f(k) − zg(k)∥2

+
1

m
∥zmin,k′ − zj′∥2

Using equation 19 and propositon 1

W ∗
2 (Peq, Zsubset) ≥

1

m
×
(
(m− 1)δ +

2(m− 1)δ

m

)
W ∗

2 (Peq, Zsubset) > δ (20)

Hence the W2 distance between Peq and Zsubset when the field is given by Ψatt is W2(Peq, Zsubset) ≤ δ while their
distance W ∗

2 (Peq, Zsubset) when the field is > δ as proved above. So W ∗
2 (Peq, Zsubset) > W2(Peq, Zsubset). Hence,

proved.

3. Additional Experimental Results
In this section of the supplement, we provide additional experiments that we could not fit in the space available in the main
paper. These empirical studies further validate the effectiveness of our method.

3.1. Performance using Small Embedding size
Context: In Section 4.2, we presented results on image retrieval using an embedding space of dimension 512. However in
certain settings, learning embeddings in a lower dimension space might be more useful, such as in settings where limited
storage is available for storing image embeddings. While this lowers the image retrieval performance, as is to be expected,
it allows for a trade-off between available memory/compute resources and the accuracy of retrieval. Hence, we compare the
performance of our method in learning a lower dimensional embedding space with recent state-of-the-art baselines.

Experiment: We train a ResNet-50 network with its embedding size set to 64 (a commonly used setting) on the Cars-196
[5], CUB-200-2011[16] and SOP [14] datasets.
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Results: As seen in Tables 1 and 2, we observe that our method is able to outperform all other methods at this task;
specifically, it outperforms strong Proxy-based baselines like ProxyAnchor[4] and ProxyGML[25] by more than 4.5 %, 2.2
% and 2.6% in the Recall@1 (R@1) metric on the Cars-196, CUB-200 and SOP datasets, respectively. It also outperforms the
current state-of-the-art, the graph-based HIST[6] by 3% and 1.4% in terms of R@1 on the Cars-196 and CUB-200 datasets.
This shows the strength of our method in learning a low-dimensional semantic representation space.

Benchmarks → CUB-200-2011 Cars-196
Methods ↓ R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8
MultiSimilarity [18] 57.4 69.8 80.0 87.8 77.3 85.3 90.5 94.2
SemiHard [12] 42.6 55.0 66.4 - 51.5 63.8 73.5 -
LiftedStruct [14] 43.6 56.6 68.6 79.6 53.0 65.7 76.0 84.3
N-Pair [13] 51.0 63.3 74.3 83.2 71.1 79.7 86.5 91.6
ProxyNCA [8] 49.2 61.9 67.9 72.4 73.2 82.4 86.4 88.7
SoftTriple [10] 60.1 71.9 81.2 88.5 78.6 86.6 91.8 95.4
Clustering [15] 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8
ProxyAnchor [4] 61.7 73.0 81.8 88.8 78.8 87.0 92.2 95.5
ProxyGML [25] 59.4 70.1 80.4 - 78.9 87.5 91.9 -
HIST [6] 62.5 73.6 83.0 89.6 80.4 87.6 92.4 95.4
Ours 63.9 ± 0.3 74.7 ± 0.2 83.5 ± 0.1 90.1 ± 0.1 83.4 ± 0.2 89.9 ± 0.2 94.2 ± 0.1 97.1 ± 0.1

Table 1. Comparison of the Recall@K (%) achieved by our method on the CUB-200-2011 and Cars-196 datasets with state-of-the-art
baselines when using an embedding size of 64, showing that it outperforms all other methods. We compute recall for our method as an
average over 5 runs as is done by other baselines which report this number.

Benchmarks → SOP
Methods ↓ R@1 R@10 R@100 R@1000
MultiSimilarity [18] 74.1 87.8 94.7 98.2
LiftedStruct [14] 62.5 80.8 91.9 -
N-Pair [13] 67.7 83.8 93.0 97.8
ProxyNCA [8] 73.7 - - -
SoftTriple [10] 76.3 89.1 95.3 -
Clustering [15] 67.0 83.7 93.2 -
ProxyAnchor [4] 76.5 89.0 95.1 98.2
ProxyGML [25] 76.2 89.4 95.4 -
HIST [6] 78.9 90.5 95.8 98.5
Ours 79.5 ± 0.2 90.8 ± 0.1 96.3 ± 0.1 98.6 ± 0.1

Table 2. Comparison of the Recall@K (%) achieved by our method on the SOP dataset with state-of-the-art baselines when using an
embedding size of 64, showing that it outperforms all other methods. We compute recall for our method as an average over 5 runs as is
done by other baselines which report this number.

3.2. Evaluation under MLRC Protocol
Context: In Section 4.2, we compared the image retrieval performance of our method with other recent techniques using
standard evaluation settings (backbone, embedding dimensions, image sizes) used in [4, 6, 7, 24]. Recently, some studies
[9, 11] have pointed to flaws in these settings, including lack of a standardized backbone architecture, weakness of the metrics
used, and lack of a standardized validation subset. Though we address some of these flaws by comparing against methods
using the same experimental settings as described in Section 4.1, in this section we additionally evaluate our method under the
constrained protocol proposed in [9]. The constrained protocol proposes using fixed optimization settings with no learning
rate scheduling to train an Inception with BatchNorm architecture. It also introduces new, more informative metrics (the
R-Precision and Mean Average Precision@R). Further details of the constrained protocol can be found in [9].

Results: We evaluate the performance of our method using models trained under the constrained protocol on the Cars-196
[5] and CUB-200-2011 [16] datasets. As seen in Tables 3 4, our method significantly outperforms all previous methods on all
metrics. We significantly outperform the previous best pair-based method, the MultiSimilarity loss [18] by 7.4% and 4.8 %
in terms of P@1 (128-dim embeddings) on the Cars-196 and CUB-200 datasets respectively. We also outperform the current
state-of-the-art method [6], HIST by 1.9 % and 1.1 % in terms of P@1 (128-dim) on the Cars-196 and CUB-200 datasets
respectively. We note that these gains are higher than the improvements made by the current state-of-the-art HIST (1.5%
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Embedding type → Concatenated (512-dim) Separated (128-dim)
Methods ↓ P@ 1 RP MAP@R P@ 1 RP MAP@R
Contrastive [2] 81.8± 0.4 35.1± 0.5 24.9± 0.5 69.8± 0.4 27.8± 0.3 17.2± 0.4
Triplet [19] 79.1± 0.4 33.7± 0.5 23.0± 0.5 65.7± 0.6 26.7± 0.4 15.8± 0.4
N-Pair [13] 81.0± 0.5 35.0± 0.4 24.4± 0.4 68.2± 0.4 27.7± 0.2 16.8± 0.2
ProxyNCA [8] 83.6± 0.3 35.6± 0.3 25.4± 0.3 73.5± 0.2 28.9± 0.2 18.3± 0.2
Margin [21] 81.2± 0.5 34.8± 0.3 24.2± 0.3 68.2± 0.4 27.2± 0.2 16.4± 0.2
Margin/class [21] 80.0± 0.6 33.8± 0.5 23.1± 0.6 67.5± 0.6 26.7± 0.4 15.9± 0.4
N. Softmax [23] 83.2± 0.3 36.2± 0.3 26.0± 0.3 72.6± 0.2 29.3± 0.2 18.7± 0.2
CosFace [17] 85.5± 0.2 37.3± 0.3 27.6± 0.3 74.7± 0.2 29.0± 0.1 18.8± 0.1
ArcFace [3] 85.4± 0.3 37.0± 0.3 27.2± 0.3 72.1± 0.4 27.3± 0.2 17.1± 0.2
FastAP [1] 78.5± 0.5 33.6± 0.5 23.1± 0.6 65.1± 0.4 26.6± 0.4 15.9± 0.3
SNR [22] 82.0± 0.5 35.2± 0.4 25.0± 0.5 69.7± 0.5 27.5± 0.3 17.1± 0.3
MultiSimilarity [18] 85.1± 0.3 38.1± 0.2 28.1± 0.2 73.8± 0.2 29.9± 0.2 19.3± 0.2
MS+Miner [18] 83.7± 0.3 37.1± 0.3 27.0± 0.4 71.8± 0.2 29.4± 0.2 18.9± 0.2
SoftTriple [10] 84.5± 0.3 37.0± 0.2 27.1± 0.2 73.7± 0.2 29.3± 0.2 18.7± 0.1
ProxyAnchor [4] 83.3± 0.4 35.7± 0.3 25.7± 0.4 73.7± 0.4 29.4± 0.3 18.9± 0.2
HIST [6] 87.7± 0.2 39.9± 0.2 30.5± 0.2 79.3± 0.2 32.8± 0.2 22.3± 0.2

Ours 88.4 ± 0.2 40.1 ± 0.2 31.0 ± 0.3 81.2 ± 0.2 33.6 ± 0.3 22.9 ± 0.1

Table 3. Comparison of the Precision@1, R-Precision (RP) and the Mean Average Precision @ R (MAP@R) as defined in [9] achieved by
our method on the Cars-196 dataset with state-of- the-art baselines under MLRC[9] settings.

Embedding type → Concatenated (512-dim) Separated (128-dim)
Methods ↓ P@ 1 RP MAP@R P@ 1 RP MAP@R
Contrastive [2] 68.1± 0.3 37.2± 0.3 26.5± 0.3 59.7± 0.4 32.0± 0.3 21.2± 0.3
Triplet [19] 64.2± 0.3 34.6± 0.2 23.7± 0.2 55.8± 0.3 29.6± 0.2 18.8± 0.2
N-Pair [13] 66.6± 0.3 36.0± 0.2 25.1± 0.2 58.1± 0.2 30.8± 0.2 19.9± 0.2
ProxyNCA [8] 65.7± 0.4 35.1± 0.3 24.2± 0.3 57.9± 0.3 30.2± 0.2 19.3± 0.2
Margin [21] 63.6± 0.5 33.9± 0.3 23.1± 0.3 54.8± 0.3 28.9± 0.2 18.1± 0.2
Margin/class [21] 64.4± 0.2 34.6± 0.2 23.7± 0.2 55.6± 0.2 29.3± 0.2 18.5± 0.1
N. Softmax [23] 65.6± 0.3 36.0± 0.2 25.3± 0.1 58.8± 0.2 31.8± 0.1 21.0± 0.1
CosFace [17] 67.3± 0.3 37.5± 0.2 26.7± 0.2 59.6± 0.4 32.0± 0.2 21.2± 0.2
ArcFace [3] 67.5± 0.3 37.3± 0.2 26.5± 0.2 60.2± 0.3 32.4± 0.2 21.5± 0.2
FastAP [1] 63.2± 0.3 34.2± 0.2 23.5± 0.2 55.6± 0.3 29.7± 0.2 19.1± 0.2
SNR [22] 66.4± 0.6 36.6± 0.3 25.8± 0.4 58.1± 0.4 31.2± 0.3 20.4± 0.3
MultiSimilarity [18] 65.0± 0.3 35.4± 0.1 24.7± 0.1 57.6± 0.2 30.8± 0.1 20.2± 0.1
MS+Miner [18] 67.7± 0.2 37.3± 0.2 26.5± 0.2 59.4± 0.3 31.9± 0.1 21.0± 0.1
SoftTriple [10] 67.3± 0.4 37.3± 0.2 26.5± 0.2 59.9± 0.3 32.1± 0.1 21.3± 0.1
ProxyAnchor 65.2± 0.2 36.0± 0.2 25.3± 0.1 56.6± 0.1 30.5± 0.1 19.8± 0.2
HIST [6] 69.6± 0.3 38.8± 0.1 28.2± 0.1 61.3± 0.2 33.1± 0.2 22.3± 0.1

Ours 70.1 ± 0.2 39.9 ± 0.1 29.4 ± 0.3 62.4 ± 0.1 33.8 ± 0.2 23.1 ± 0.3

Table 4. Comparison of the Precision@1, R-Precision (RP) and the Mean Average Precision @ R (MAP@R) as defined in [9] achieved by
our method on the CUB-200-2011 dataset with state-of-the-art baselines under MLRC[9] settings.
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and 1.1 % ) over previous methods on these benchmarks. Our method also outperforms all previous methods in terms of the
R-Precision and Mean Average Precision @ R metric, demonstrating the quality of the semantic metric learned by it.

Dataset → CUB-200-2011 Cars-196 SOP
Arch/Dim R50/512 IBN/512 R50/512 IBN/512 R50/512 IBN/512
optimizer Adam Adam Adam Adam Adam Adam
learning rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

weight decay 5e−4 5e−4 1e−4 1e−4 5e−4 5e−4

Batch Size 100 180 100 180 100 180
BN freeze Yes Yes Yes Yes No No
Warm-up 1 1 1 1 0 0
lr for proxies 0.01 0.01 0.01 0.01 0.01 0.01

Table 5. Hyperparameter details for Potential Field based DML for experiments described in Section 4 of the main paper.

4. Hyperparameters
For easy reproducibility, Table 5 presents further details about the hyperparameters used in our experiments on all 3 datasets
described in Section 4.

5. Computational Complexity vs Number of proxies

Methods ↓ Avg. time per epoch (seconds)
ProxyNCA [8] 14.2 ±0.1

Proxy Anchor [4] 14.2 ±0.1
Potential Field (Ours) M=5 14.3±0.1

Potential Field (Ours) M=20 14.5±0.1
Potential Field (Ours) M=30 14.8±0.1

Table 6. Average time (in seconds) required to run an epoch of training on the Cars-196 dataset with a ResNet50 backbone using various
methods. These results demonstrate that the time complexity of our method is similar to previous proxy-based methods. Also, note that an
increase in M does not significantly alter the time complexity of our method once the number of parameters specifying proxies here (as is
in most cases) is much lower than the total number of parameters (in the neural network) being trained. The standard evaluation settings
of backbone, embedding dimensions, image sizes as given in Sec. 4.1 of the main paper were employed for all methods. Times were
measured on a machine equipped with a single A4000 GPU over 20 epochs.

6. Visual Results
We present qualitative results for image retrieval by our method to evaluate the semantic similarity metric learned by it.
Figure 1 displays 2 examples of query images from each of the 3 datasets, followed by 4 nearest images retrieved by our
method, arranged in increasing order of distance. It can be seen that despite the large intra-class variation (pose, color) in the
datasets, our method is able to effectively retrieve similar images.
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(a)

(b)

(c)

Figure 1. Example image retrieved by our method for query images from (a) Cars-196 (b) CUB-200-2011 and (c) SOP test datasets, in
increasing order of distance from the query. Correct retrievals have a green border, while incorrect ones have a red one.

Figure 2 displays a t-sne visualization of the embedding space learnt by our method on the CUB-200-2011 dataset. it can
be seen that images closer together share more semantic characteristics than those that are far apart.

Figure 2. A t-sne visualization of a semantic representation space learnt by our method on the CUB-200 dataset
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