Supplementary Material: Potential Field Based Deep Metric Learning

In this supplementary material, we provide additional information which we could not fit in the space available in the
main paper. We do so in six sections: Sections | & 2 contain proofs for Proposition 1 and Corollary 1 respectively; Section
3 contains additional empirical studies that further validate the effectiveness of our method ( Sec. 3.1: using a smaller
embedding size, Sec. 3.2: Results when using the MLRC protocol [9]); Section 4 provides implementation details about
the hyperparameters used; Section 5 empirically compares the time complexity of our method with other methods; Section 6
provides qualitative retrieval results and a t-sne visualization of the embedding space learned by PFML.

1. Proof of Proposition 1

Proposition 1:Let Z = {z1...z,} be a set of sample embeddings belonging to a class, then there exists a 0 < § <
ming ; ||z — 2|2
2(1+ 1)
Yot ( Eq. 4 from paper ) defined using (Z, &) when restricted to a radial line from z; has a minimum at each zyy ;. The
field V., (by CPML, the interaction strength increasing potential defined in Eq. 2) defined by Z does not achieve such a

minimum at points within § distance from all z;.
Proof: We first define the potential field at point z caused by an individual embedding z;, ©4++(2,2;) and ¢, (z,2;) are
defined as:

and a distance Zpin,; < 0 for each embedding z;, i € {1...n} such that the attractive potential field

1
3 if[|z -2zl <¢
Vart(z,2;) == 1 (1)
—— otherwise.
2 = zil3
o () 52 if [z —zla < ¢ @
2,2;) := )
ot |z —z;||2 otherwise.
The potential fields created by all data points are:
Vot (z) = Z Vatt(2,2;) (3)
i=1
Vo (2z) = Z Vot (2, 2;) “)
i=1

We prove the proposition in two parts, first proving the assertion for ¥, (z) in Part 1, and then moving on to proving the
assertion for ¥}, (z) in Part 2.

1.1. Part 1: Proof for ¥, (z)

To prove that ¥, (z) achieves a minimum in the radial direction at a distance z,,;, ; < ¢ distance of each embedding z;, we
observe that U,;; is continuous and bounded within the ¢ hyper-spheres S; = ||z — z;|| < 6. Each hypersphere is a closed
bounded set.

This enables us to apply the Extreme Value Theorem (EVT) [20] to W on S;. Using EVT, we note that W, achieves a
minimum ¥, (z*) on the set S; at some distance zy,ip ;-

Zmin,i May either be < § (minimum inside the sphere) or = § (minimum on the boundary). We analyze both cases
separately, proving that the minimum for W4, Zpmipn,; on S; is also a minimum for ¥, on the embedding space RP (D=
embedding dimension):



Case 1: If minimum z* lies inside the sphere S;, then 2,y ; is @ minimum for ¥, on RP too because S; ¢ RP (D =
embedding dimension).
Case 2: If zy,,5,,,; = 0 (minimum z* lies on the border of sphere ;). The proof for this intuitively relies on the fact that the
derivative of the potential field of z; (1), (2, z;)) outside S;, around z* is positive, and the derivative (i.e., interaction strength
or force) increases as we choose a smaller §. Consequently, the derivative of the potential field of z; dominates the force
applied at z* compared to the force applied by potentials of other embeddings (which would have decayed). Hence, with a
small enough delta, it is possible to ensure that the potential at points outside .S; is larger than the one on the boundary.

To formally handle this case, we first define W,4+| g, as the restriction of W to the line R; = {z; + ¢ z* | t € R}. Then
by the definition of a local minimum

z* is a minimum of W ;| g, iff there exists an € > 0 such that Uyt | g, (z*) < Uout| g, (z/) forallz € R;. We note that for
any Z €8, Uan |r, (%) < Wust|r, (z/) is trivially true by the definition of z*. For z ¢ S;, we use the Taylor expansion of
WU ,+¢| g, to find such an € and prove that such a z* is also a minimum for ¥ ,4| g, in RD .

Specifically, the Taylor expansion for ¥ ,;; in the radial direction (co-ordinates centered at z;) is given as:

/ % ’ « 8\11 R; N 4 *
Vol () = Vol (@) + (=) (P &) e’ 2 ®)
here t is the unit radial vector pointing toward z* centered at z; (6)
Expanding the partial derivative, we get:
OV st | R, - 8¢att(z/7zi) R;
7 — 7 7
" Z; .. ™
Evaluating it at z*, we get:
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Also, as e — 0, Dort] — 0 as those are higher order terms.
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Simplifying the Taylor expansion (Eq. 5)
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So forz ¢ Si, Yart(Zmin,i) < ‘I/att(z/) for all ||z/ -7 <e.

Therefore, by definition z* is a minimum of W 4|, on RP in Case 2 too.
Hence, W, when restricted to a radial line from z; has a minimum at a distance 2p,in,; < ¢ from z;Vi € {1...n} for

, o
6 < argmin; (

Vi

a+1
) . Zmin,; lies within J distance of the embeddings z; by definition of the hyperspheres .S;.

1.2. Part 2: Proof for ¥}, (z)
Outside the hyperspheres S; = ||z — z;|| < J, VUZ,,(z) (z ¢ S;)is given by:

VUG, (2) = Z Vipau(z —2;)

VU, (z) = ZQ(z—zi) :2nr—Zin =2n (z—ZZ) (10)
dies zi_

Now define differentiable extensions of the potentlals-

iz —1o) = |z —ro|l3 (11)

To calculate V¥?,,(z) inside the hyperspheres (r € S;), we note that no two hyper spheres .S; intersect with each other as
0 < 0.5min, ; ||z; — 2;]|2. Observing that forr € S;

It achieves a single minimum at Z;opaimin =

VI, (2) Z Vi (z—z))

Jj=1j#1

Using triangle inequality for z € S;:
| vam z))| = Vi —z)| < | Y Viiu(z—z)l = IV, @)
J=1,j#i
Using || Vi1(z — z;)|| < 20 (from Eq. 11)
VUG (@) = | ZV%” z;)| — 26

We know that the RHS term > 0 because || 327, Vi35, (z — z;)|| > 26 for

~ Z; é
Iz =2l > (12)
i=1
using Equation 10. For all such z:
Ve (2)] >0 (13)

At most one sphere .S; has an r; € S; not satisfying Equation 12. We prove this by contradiction. Assume that another sphere
S; has r; € S; not satisfying Equation 12. Now the distance between r; and r; satisfies:

||I‘i — I‘j” Z dmzn — 2(5 (14)

dmin

2(1+1)

here dyni, = min ||z; — z;[|2 Using the fact that 6 < by definition and substituting for d,,;,, in equation 14 we
i,

get:

1
||l'i —l'j” > 20 <1+ n) — 26

26
I =l > =



Both ; and r; cannot satisfy equation 12 as all points satisfying it lie within a sphere of radius %, and distance between r;, r;
is more than the maximum distance between points in a sphere, that is 2%. Hence, no such r; € S; can exist.

Hence for any other hypersphere S, # j, for all z we have | VU%,,(z)|| > 0, and hence no minimum exists within them.
Hence, proved.

2. Proof of Corollary 1

Corollary 1: Let Z = {z1 ...z, } be a set of sample embeddings belonging to a class exerting an attraction field on a set
of proxies P = {p,...p,,}. Consider the equilibrium distribution P., of proxies minimizing the potential energy. If the
potential field is defined by V., then the Wasserstein distance Wy between P, and the subset of data they represent is lower
than when the potential field is defined by V7.

Proof: Let the potential fields W, and V7, be given by Equations 3 and 4 respectively.

n

Yrotar(r) = > (r — ;) (15)

i=1

where v is defined using Eq 4 from the paper(att and class subscript j omitted for clarity). The potential energies of the proxy

distribution P, in these potential fields, 4,02y and U,,,.,,., respectively are given by :

uprozy: Z \I/att(pi)
Pi € Pey

u;ro:r'q_ Z \I’:tt<pz)

PiEPeq

At equilibrium, each proxy migrates to the nearest minimum in the field. The subset of data the proxies represent are given
by the subset of m data points Zsypset = Zf(k)s ke {l...m}; Zsupset C Z which is the closest in Wasserstein distance Wo
from the proxies.

Case 1: Let the field be defined by ¥,. Assumptions: As the distances of proxies p;,k € 1...m from embeddings
z; are minimized, we assume that they migrate to a distance of d,;;,,, f(1) from the nearest embedding in the potential field
denoted by z,,;,, r(r) Which is located within ¢ distance of data point z ;) (using proposition 1 ). Assuming that the proxies
are initialized using a normal distribution (commonly used) and m << n, which is typically true, we ignore the probability
of more than one proxy going to the same minimum z,,,;,, ¢() (o f(k) is one-one). Therefore:

Wa (PPEI7 Zsubset lnf ( Z Hpk — Zx(k) |2>

here the infimum is over all permutations 7 of k elements

1 m
W (Peq» Zsubset) = (m Z ||zmzn,f(k) - zf(k)||2>

k=1
Using proposition 1

Wa(Pegs Zsubset) < <§1 X (md))

WQ( eqr subset) § ] (16)

Hence when the field is defined by U, we have Wa(Pe.q, Zsupser) < 0.

Case 2: Let the field be defined by ¥,. The proxies p,,k € 1...m migrate to the nearest minimum in the potential field

denoted by z,,;,,, r(x). Using Proposition 1 proved before, we know that all minima satisfy min |z,,,;,,, r(x) — z;|| > ¢ for all
J

j except at most one j = 5’ for which let k = &'

First, we prove the corollary for the case if there exists such a j = j'. Let zy(;),k = {1...m} represent the ordered
subset of data embeddings that minimize the W5 distance metric with the proxies p;, € P.,. From proposition 1, we know



that:

”Zmin,f(k) —Zy ”2 <9

)
we also have:
> mi > 20 !
29y = 2|2 = min |l2; —z;l> > 26 {1+ —
(18)
Using the triangle inequality on the above 2 inequalities and substituting, we get:
”Zmin,f(k) — Zg(k,)HQ > ||Zg(k) - Zj' ||2 - ||Zmin,f(k) - Zj/ H2
1
[ Zimin, (k) — Zg(k)ll2 > 20 <1 + m) —6
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m
The Wy distance is given by:
W2 ( eq> 5ubset lIlf < Z ||pk; —Zr )”2)
here the infimum is over all permutations 7 of k elements
1 m
W3 (P, eq> Zsubset) = <m Z ||Zmin,f(k) - Zg(k)|2>
k=1
1« 1
WQ ( eqs subset) = % Z ||Zm1nf(k) - Zg(k)HQ + E”Zmin,k/ - zj’||2
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Using equation 19 and propositon 1
1 2(m —1)¢
W eqr ~subse Z — X -1 6 -
§(Puas Zostes) = ;% (= )54 27200
W2 ( eq> subset) >4 (20)

Hence the W, distance between Pry and Zgypse: When the field is given by Woyy is Wa(Peg, Zsubset) < 0 while their
distance W3 (Pey, Zsubser) When the field is > ¢ as proved above. So W3 (Pey, Zsubset) > Wa(Peq, Zsubser). Hence,
proved.

3. Additional Experimental Results

In this section of the supplement, we provide additional experiments that we could not fit in the space available in the main
paper. These empirical studies further validate the effectiveness of our method.

3.1. Performance using Small Embedding size

Context: In Section 4.2, we presented results on image retrieval using an embedding space of dimension 512. However in
certain settings, learning embeddings in a lower dimension space might be more useful, such as in settings where limited
storage is available for storing image embeddings. While this lowers the image retrieval performance, as is to be expected,
it allows for a trade-off between available memory/compute resources and the accuracy of retrieval. Hence, we compare the
performance of our method in learning a lower dimensional embedding space with recent state-of-the-art baselines.

Experiment: We train a ResNet-50 network with its embedding size set to 64 (a commonly used setting) on the Cars-196
[5], CUB-200-2011[16] and SOP [14] datasets.



Results: As seen in Tables | and 2, we observe that our method is able to outperform all other methods at this task;
specifically, it outperforms strong Proxy-based baselines like ProxyAnchor[4] and ProxyGML[25] by more than 4.5 %, 2.2
% and 2.6% in the Recall@1 (R@ 1) metric on the Cars-196, CUB-200 and SOP datasets, respectively. It also outperforms the
current state-of-the-art, the graph-based HIST[6] by 3% and 1.4% in terms of R@1 on the Cars-196 and CUB-200 datasets.
This shows the strength of our method in learning a low-dimensional semantic representation space.

‘ Benchmarks — H CUB-200-2011 H Cars-196 ‘
Methods | Re@l R@2 R@4 R@8 R@1 R@2 R@4 R@8
MultiSimilarity [18] 574 69.8 80.0 87.8 713 85.3 90.5 94.2
SemiHard [12] 42.6 55.0 66.4 - 51.5 63.8 73.5 -
LiftedStruct [14] 43.6 56.6 68.6 79.6 53.0 65.7 76.0 843
N-Pair [13] 51.0 63.3 743 83.2 71.1 79.7 86.5 91.6
ProxyNCA [8] 49.2 61.9 67.9 72.4 73.2 824 86.4 88.7
SoftTriple [10] 60.1 71.9 81.2 88.5 78.6 86.6 91.8 95.4
Clustering [15] 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8
ProxyAnchor [4] 61.7 73.0 81.8 88.8 78.8 87.0 92.2 95.5
ProxyGML [25] 59.4 70.1 80.4 - 78.9 87.5 91.9 -

HIST [6] 62.5 73.6 83.0 89.6 80.4 87.6 92.4 95.4
[ Ours | 639+03 747402 835+01 90.1+01 || 834+02 89.9+02 942401 971401 |

Table 1. Comparison of the Recall@ K (%) achieved by our method on the CUB-200-2011 and Cars-196 datasets with state-of-the-art
baselines when using an embedding size of 64, showing that it outperforms all other methods. We compute recall for our method as an
average over 5 runs as is done by other baselines which report this number.

| Benchmarks — I SOP |
Methods | R@1 R@10 R@100 R@1000
MultiSimilarity [18] 74.1 87.8 94.7 98.2
LiftedStruct [14] 62.5 80.8 91.9 -
N-Pair [13] 67.7 83.8 93.0 97.8
ProxyNCA [8] 73.7 - - -
SoftTriple [10] 76.3 89.1 95.3 -
Clustering [15] 67.0 83.7 93.2 -
ProxyAnchor [4] 76.5 89.0 95.1 98.2
ProxyGML [25] 76.2 89.4 95.4 -
HIST [6] 78.9 90.5 95.8 98.5

] Ours H 795+02 908+0.1 963+0.1 98.6=+0.1

Table 2. Comparison of the Recall@ K (%) achieved by our method on the SOP dataset with state-of-the-art baselines when using an
embedding size of 64, showing that it outperforms all other methods. We compute recall for our method as an average over 5 runs as is
done by other baselines which report this number.

3.2. Evaluation under MLRC Protocol

Context: In Section 4.2, we compared the image retrieval performance of our method with other recent techniques using
standard evaluation settings (backbone, embedding dimensions, image sizes) used in [4, 6, 7, 24]. Recently, some studies
[9, 11] have pointed to flaws in these settings, including lack of a standardized backbone architecture, weakness of the metrics
used, and lack of a standardized validation subset. Though we address some of these flaws by comparing against methods
using the same experimental settings as described in Section 4.1, in this section we additionally evaluate our method under the
constrained protocol proposed in [9]. The constrained protocol proposes using fixed optimization settings with no learning
rate scheduling to train an Inception with BatchNorm architecture. It also introduces new, more informative metrics (the
R-Precision and Mean Average Precision@R). Further details of the constrained protocol can be found in [9].

Results: We evaluate the performance of our method using models trained under the constrained protocol on the Cars-196
[5] and CUB-200-2011 [16] datasets. As seen in Tables 3 4, our method significantly outperforms all previous methods on all
metrics. We significantly outperform the previous best pair-based method, the MultiSimilarity loss [18] by 7.4% and 4.8 %
in terms of P@1 (128-dim embeddings) on the Cars-196 and CUB-200 datasets respectively. We also outperform the current
state-of-the-art method [6], HIST by 1.9 % and 1.1 % in terms of P@1 (128-dim) on the Cars-196 and CUB-200 datasets
respectively. We note that these gains are higher than the improvements made by the current state-of-the-art HIST (1.5%



Embedding type — ||

Concatenated (512-dim)

Separated (128-dim) |

Methods | P@ 1 RP MAP@R | P@1 RP MAP@R
Contrastive [2] S8L.8+04 351+05 249+05 ] 698104 27.8+03 17.2+0.4
Triplet [19] 791404 337405 23.0+05 || 65.74+0.6 267404 158+0.4
N-Pair [ 13] 81.0+0.5 350404 244+04 | 682+04 277402 16.8+0.2
ProxyNCA [8] 83.6+03 356+03 254+03 | 735402 289402 183+0.2
Margin [21] 812405 348403 242+03 | 682+04 272402 164402
Margin/class [21] 80.0+0.6 338+0.5 231406 || 67.5+06 26.7+04 15.9+0.4
N. Softmax [23] 832403 362+03 260+03 | 726+02 293+02 18.7+0.2
CosFace [17] 855402 37.3+03 27.6+0.3 | 747402 29.0+0.1 188+0.1
ArcFace [3] 85.4+03 370403 27.2+03 | 721+04 27.3+02 17.140.2
FastAP [1] 7854+ 0.5 33.6+05 23.1+0.6 | 651404 266+04 159+0.3
SNR [22] 820405 352404 250405 | 69.7+05 275403 17.1+0.3
MultiSimilarity [18] || 85.1+0.3 38.14+0.2 28.1+0.2 || 73.8402 29.9+0.2 19.3£0.2
MS+Miner [ 18] 83.7+03 371403 27.0+04 || 71.8+02 294+02 189+0.2
SoftTriple [10] 845+03 370402 271402 | 737402 293402 187+0.1
ProxyAnchor [4] 833+04 357403 257404 || 737404 294403 189402
HIST [6] 87.7+0.2 399402 305+02 | 793402 328+02 223+0.2

[ Ours [884+02 401+02 31.0+03 || 8124102 336+03 229+0.1 |

Table 3. Comparison of the Precision@ 1, R-Precision (RP) and the Mean Average Precision @ R (MAP@R) as defined in [9] achieved by
our method on the Cars-196 dataset with state-of- the-art baselines under MLRC[9] settings.

| Embedding type — || Concatenated (512-dim) | Separated (128-dim) |
Methods | P@1 RP MAP@R P@1 RP MAP@R
Contrastive [2] 68.1+03 3724+03 26.5+03 1] 59.7+04 32.0+£0.3 21.2+0.3
Triplet [19] 64.2+03 346+0.2 23.7+£0.2 55.8+0.3 29.6+0.2 18.8+0.2
N-Pair [13] 66.6 0.3 36.0+£0.2 25.14+0.2 58.14+0.2 30.84+£0.2 19.94+0.2
ProxyNCA [8] 65.7+04 35.14+03 242403 57.9+0.3 30.2+0.2 19.3+0.2
Margin [21] 63.6 0.5 3394+03 23.1+£03 | 548+0.3 289+0.2 181=+0.2
Margin/class [21] 64.4+02 346+0.2 23.74+0.2 55.6 0.2 29.34+0.2 18.54+0.1
N. Softmax [23] 65.6 0.3 36.0+£0.2 25.3+0.1 588 +0.2 31.84+£0.1 21.0£0.1
CosFace [17] 67.3+03 375+0.2 26.7+0.2 59.6 £ 04 32.0+0.2 21.240.2
ArcFace [3] 67.5+03 37.3+£0.2 26.5+0.2 60.2+0.3 3244+02 21.54+0.2
FastAP [1] 63.2+0.3 34.24+0.2 23.540.2 55,6 £0.3 29.7+0.2 19.140.2
SNR [22] 66.4+06 366403 258404 || 581+£04 31.2+0.3 204+0.3
MultiSimilarity [18] 65.0+0.3 3544+01 24.74+0.1 57.6+0.2 30.84+£0.1 20.240.1
MS+Miner [18] 67.7+02 37.3+0.2 26.54+0.2 594+0.3 31.94+0.1 21.0%0.1
SoftTriple [10] 67.3+04 37.3+0.2 26.54+0.2 59.94+0.3 32.14+£0.1 21.34+0.1
ProxyAnchor 65.24+0.2 36.0+£0.2 253+0.1 56.6 0.1 30.54+0.1 19.84+0.2
HIST [6] 69.6 0.3 38.8+0.1 28.2+0.1 61.3+0.2 33.1+£0.2 223+0.1

| Ours || 70.1+0.2 399+01 294+0.3 || 624+0.1 338+0.2 23.1+0.3 |

Table 4. Comparison of the Precision@1, R-Precision (RP) and the Mean Average Precision @ R (MAP@R) as defined in [9] achieved by
our method on the CUB-200-2011 dataset with state-of-the-art baselines under MLRC[9] settings.



and 1.1 % ) over previous methods on these benchmarks. Our method also outperforms all previous methods in terms of the
R-Precision and Mean Average Precision @ R metric, demonstrating the quality of the semantic metric learned by it.

Dataset — CUB-200-2011 Cars-196 SOpP
Arch/Dim R50/512 IBN/512 R50/512 IBN/512 R50/512 IBN/512
optimizer Adam Adam Adam Adam Adam Adam
learning rate le™* le le~* le le ™ le™*
weight decay 5e~4 Fe~4 le le 5e~4 5e—4
Batch Size 100 180 100 180 100 180
BN freeze Yes Yes Yes Yes No No
Warm-up 1 1 1 1 0 0

Ir for proxies 0.01 0.01 0.01 0.01 0.01 0.01

Table 5. Hyperparameter details for Potential Field based DML for experiments described in Section 4 of the main paper.

4. Hyperparameters

For easy reproducibility, Table 5 presents further details about the hyperparameters used in our experiments on all 3 datasets
described in Section 4.

5. Computational Complexity vs Number of proxies

Methods | Avg. time per epoch (seconds)
ProxyNCA [8] 14.2 +0.1
Proxy Anchor [4] 14.2 +0.1
Potential Field (Ours) M=5 14.340.1
Potential Field (Ours) M=20 14.5£0.1
Potential Field (Ours) M=30 14.840.1

Table 6. Average time (in seconds) required to run an epoch of training on the Cars-196 dataset with a ResNet50 backbone using various
methods. These results demonstrate that the time complexity of our method is similar to previous proxy-based methods. Also, note that an
increase in M does not significantly alter the time complexity of our method once the number of parameters specifying proxies here (as is
in most cases) is much lower than the total number of parameters (in the neural network) being trained. The standard evaluation settings
of backbone, embedding dimensions, image sizes as given in Sec. 4.1 of the main paper were employed for all methods. Times were
measured on a machine equipped with a single A4000 GPU over 20 epochs.

6. Visual Results

We present qualitative results for image retrieval by our method to evaluate the semantic similarity metric learned by it.
Figure 1 displays 2 examples of query images from each of the 3 datasets, followed by 4 nearest images retrieved by our
method, arranged in increasing order of distance. It can be seen that despite the large intra-class variation (pose, color) in the
datasets, our method is able to effectively retrieve similar images.



Queries Top Retrievals

Figure 1. Example image retrieved by our method for query images from (a) Cars-196 (b) CUB-200-2011 and (c) SOP test datasets, in
increasing order of distance from the query. Correct retrievals have a green border, while incorrect ones have a red one.

Figure 2 displays a t-sne visualization of the embedding space learnt by our method on the CUB-200-2011 dataset. it can
be seen that images closer together share more semantic characteristics than those that are far apart.

Figure 2. A t-sne visualization of a semantic representation space learnt by our method on the CUB-200 dataset
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