Believing is Seeing: Unobserved Object Detection using Generative Models

Supplementary Material

A. Object, Scene and Parameter Selection
Methodology

In this Appendix, we detail the methodologies for scene
selection, the filtering process for scenes analyzed, the cri-
teria for selecting images and objects, and the approach for
parameter calibration.

RealEstatel0k random scene selection methodology.
To systematically select diverse scenes, we sampled video
frames in the RealEstate10k test dataset, which contains
world-to-camera poses and pinhole camera intrinsics [87],
built using the ORBSLAM pipeline (with an ambiguous
scale) [42, 43]. Due to memory limitations, we downloaded
250 random scenes for analysis. RealEstate10k contains
indoor and outdoor scenes but lacks metadata or labels, thus
to interpret and filter each scene, our objective was to select
representative viewpoints in each scene. We selected these
frames, for every scene, at approximately equidistant [9] in-
tervals in SE(3), between the two farthest camera-to-world
poses for each scene. Using these selected images, per scene,
we used the ChatGPT-40 API [46] to classify scenes as in-
door or outdoor based on these 10 images per scene. For
the indoor scenes, we further utilized the API to categorize
them into four types: kitchen, study, bedroom, and living
room. This automated labeling ensured that our subsequent
analysis remained focused and consistent across the relevant
indoor scenes.

NYU Depth V2 random scene selection methodology.
For the NYU Depth V2 dataset [65], which contains meta-
labels, this process was not necessary. From the entire
dataset, we selected 50 random scenes that met the follow-
ing criteria: living rooms, bedrooms, kitchens, and studies.
These categories ensured that the selected scenes closely
matched the diversity found in RealEstate10k, making the
study more homogeneous compared to other available meta-
labels in the dataset.

Filtering and selection of randomly selected scenes.
We refined the selection of indoor scenes from both datasets
based on the following criteria:

* Scene Size: Scenes containing fewer than 50 images were
excluded to mitigate the risk of reconstruction sparsity.

* Camera Movement: To ensure sufficient variation in move-
ment, a minimum threshold was applied to the geodesic
distance between the two furthest camera poses, requiring
it to exceed 0.01 units.

» Semantic Content: Scenes were filtered based on ob-
ject detection using YOLOv8x [26, 53] on COCO object

classes [34]. Specifically, scenes were excluded if fewer
than 50% of frames contained objects detected with a
confidence score > 0.5.
Out of the multiple scenes that met these criteria in each
dataset, we randomly selected 10 scenes from both datasets
for our study. For the two datasets the selected scenes, target
objects, and the input images are tabulated in Tab. 4.

End-to-end object selection pipeline. = We deployed an
end-to-end automated object selection pipeline on the ran-
domly acquired scenes, logging the occurrence frequency of
detected objects across the subsets of both datasets. From
the combined scenes of NYU Depth V2 and RealEstate10k
scenes, we selected the 20 most frequently detected object
classes among the 80 classes in the COCO dataset [34]. For
our analysis, we focused on 10 random object categories
from these 20 classes that were present in at least one of
the chosen scenes in the combined choices of scenes from
both datasets. The COCO object categories analyzed in-
clude: refrigerator, TV, bed, chair, sink, oven, book, laptop,
couch, and door. We used Yolov8x [26, 53] for its strong
adaptability for images of various resolutions and superior
generalizability. Note that all 2D/3D cases analyzed were
manually inspected and verified against YOLOv8x annota-
tions to ensure high quality ground truth annotations.

Context image-object pair selection for the study.  For
each scene, we select a single image based on specific cri-
teria to ensure the target object is effectively represented
within the scene. The selection process involves two crite-
ria. First, an image is selected if the target object is absent
in the 360 x 360 center-crop but present in the 360 x 640
full image. Alternatively, an image is chosen if the target
object is not visible in the 360 x 640 frame but appears in
more than 50% of the scene’s frames at a confidence > 0.5.
This criterion accounts for objects that may be occluded
or located entirely outside the camera’s frustum while still
present within the scene. These criteria result in a large set
of image-object pairs across scenes, meeting at least one of
the specified conditions. For the NYU Depth V2 dataset,
the fraction of available cases is relatively higher, which
is expected due to slower average sequential camera move-
ments compared to the RealEstate10k dataset. From this
filtered set, we select 10 random test image-object pairs per
dataset. To avoid cross-fading or sudden movement artifacts,
images are not chosen from the first or last 10 timestamps,
where such transitions were qualitatively observed in some
camera trajectories. For the RealEstate10k dataset, there
are 31 scene-object pairs where the ground truth observa-



Table 4. Scene selected from RealEstate10k [87] and NYU Depth V2 [65] datasets.

RealEstate 10k Dataset [87] \

NYU Depth V2 Dataset [65]

Scene ID Image ID ‘ Scene ID Image ID
2e¢4013ea92d04301 119586133 Living Room 0004 1295148543.251260-1026494144
2bec33eeeab0bb9d 34768067 Kitchen 0040 1315269892.882236-1150326380
2e64a2d17f9a76f7 162629000 Living Room 0016 1300200232.988284-1300278508
2b625e¢92f2cf9ded 51384667 Living Room 0010 1295836465.564725-1670107084
2¢cb9869cb05a9a01 77786042 Living Room 0002 1294890229.045795-2653268294
3c64a373bclc53bd 199767000 Bedroom 0025 1315330245.479316-1684325155
ff6d8ab35e042db5 142142000 Bedroom 0029 1315423943.586243-93796617
2bd7cee1fa9¢8996 51133333 Kitchen 0024 1315441158.531288-3169924603
3de4lace235a3al3 49616000 Kitchen 0031 1315165725.285327-3895871610
2d6d5e82bda0611c 153253000 Study 0003 1300708629.505940-4057834691
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Figure 7. Threshold Multiplier A vs the Retention Rate of points
averaged across all predicted grids in 2D, 2.5D and 3D.

tion captures a relevant COCO object in both 2D and 2.5D
representations, with 37 cases observed in 3D. In contrast,
the NYU Depth V2 dataset contains 19 scene-object pairs
captured within the frustum in 2D and 2.5D, with 26 cases
in 3D.

Parameter calibration methodology. As shown in
Fig. 8, we calibrated the detector confidence by analyzing
the average bounding boxes per frame across 100 randomly
selected videos from the indoor RealEstate10k test set out of
the 250 downloaded videos. We utilize the same heuristics
across both the datasets. A threshold of 0.1 achieves a bal-
anced trade-off between sensitivity and precision with stable
variance. All other parameters, followed the YOLOv8x de-
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Figure 8. Calibration of Object Detector Confidence using Bound-
ing Boxes per Frame.

fault parameters [26]. For the threshold of the metric, we
use a multiplier as 7 := A\/|X| > 1/|X|. To calibrate this
value, we use the average retention rates across all points in
all predicted grids pre-normalization to post-normalization
across the RealEstate10k dataset (2D and 3D inclusive) and
plot it as a percentage. We see a breaking point at A ~ 1.4,
as shown in Fig. 7, which informs our choice of the heuristic.

B. 3D scene reconstruction details

In this appendix we outline the 3D scene reconstruction
methodology for the two datasets.

RealEstate10k 3D reconstruction.  We used SIFT [39]
to extract up to 50,000 features per image across multi-



ple GPUs. These features were used for sequential match-
ing [66], followed by point triangulation using the camera
parameters provided by the RealEstate10k dataset [87]. This
process yielded sufficient matches for patch-match stereo
reconstruction[20, 61, 62], though the resulting 3D model
remained relatively sparse [87].

NYU Depth V2 3D reconstruction.  The NYU Depth V2
dataset posed significant challenges for reconstruction due
to the absence of ground-truth poses. Using COLMAP [61]
for scene mapping was computationally intensive, so we
opted for GLOMAP [48], which significantly expedited the
process. We calculated the camera intrinsics in normal-
ized device coordinates (NDC), i.e., clip space, for each
reconstructed scene, using the COLMAP pinhole camera
model, with the principal points positioned at the image
midpoints. Camera extrinsics obtained from the reconstruc-
tion were subsequently utilized for downstream tasks. Next,
we undistorted the images and applied patch-match stereo
reconstruction to generate a dense 3D reconstruction.

Post-reconstruction processing.  After dense reconstruc-
tion, statistical outlier filtering was applied to reduce noise
and improve the quality of the reconstructed 3D point cloud.
This process evaluates each point based on distances to its
20 nearest neighbors. Points deviating by more than twice
the standard deviation from the mean distance are classified
as outliers and are removed. We applied a depth clipping
threshold of 10.0 distance units with respect to the input cam-
era pose. Finally, each 3D reconstruction was transformed
to align with the camera pose of a selected reference image
in each scene. For every point cloud, given the bounding
boxes, for the target objects, from the 2D images, we back-
project to obtain the target 3D points with their confidences.
We voxelize these points as required for the ground truth
representation assigning the average non-zero confidence of
the points within the voxel, to each voxel center. Details of
the other COLMAP reconstruction parameters used will be
released with the code.

C. Additional implementation details

In this appendix, we provide additional implementation de-
tails, especially on the sampling process and post-processing,
filtering, pose selection process, and depth handling tech-
niques employed in our study.

System Requirements.  The experiments were conducted
on a single machine equipped with an NVIDIA A6000 GPU,
an AMD Ryzen Threadripper Pro 5995WX CPU, and 64GB
of DDRS RAM, running Ubuntu 22.04 LTS. From sampling
to the final metrics summary, our end-to-end pipeline takes
up to 38 minutes utilizing multiprocessing.

Implementation details for A.  To identify the distri-
bution peaks or modes, we applied spatial filtering within
the Moore neighborhood for each grid element [18], using
constant zero padding at the edges to detect local maxima.
Multiple kernel sizes (3, 5, 7, and 10) were used to ensure
robust peak detection across varying scales. To compute
the nearest distances between these detected peaks, we em-
ployed a KDTree data structure.

DFM sample detection implementation.  The outputs of
the DFM [73] are of resolution 128 x 128. A key limitation
of using an off-the-shelf detection model like Yolov8x is its
reduced ability to detect all instances at lower resolutions
than its training resolution. To address this, we resize the
images from 128 x 128 to 512 x 512 for detection, compute
the bounding boxes at the higher resolution, and then rescale
the bounding box extents back to the original 128 x 128
resolution (to the nearest integer pixel value) for further
processing.

DFM sampling and filtering details. @~ DFM [73] infer-
ence was performed using autoregressive sampling with 3
time-steps per sample, generating 30 intermediate frames,
with a temperature of 0.85 and a guidance scale of 2.5. To
filter out intermediate frames potentially exhibiting noisy
or featureless outputs due to unconditioned sampling, we
implemented a three-phase filtering pipeline. First, noise
was quantified using the Laplacian variance V7, and sam-
ples were discarded if V7, < 100 in more than 80% of the
frames [50]. Next, Structural Similarity Index (SSIM) was
computed between consecutive frames, with videos rejected
if SSIM > 0.9 in over 50% of the frames, indicating insuf-
ficient variation [76]. Finally, per-pixel average intensity
L; was tracked, and samples were discarded if the variation
between consecutive frames remained below 50 units for
over 50% of the frames, indicating static content or poor
lighting. The inference time required for each sample per
target camera pose constitutes a significant limitation of the
DFM. Moreover, the filtration step, conducted after sam-
ple generation, often extended the overall process to several
days to collect 75 samples per input image, with the duration
varying between different input images. This computational
overhead poses a significant constraint on scaling the sample
size.

Choice of poses in SE(2) for DFM sampling.  To bal-
ance scene diversity and computational efficiency for the
DFM experiments, three target poses were selected for each
context image. These poses, as illustrated in Fig. 9, (Pose
1 being the input frame, Fig. 2) were chosen based on their
ability to cover the scene without blind spots, defined in
terms of (z,y, #) in Tab. 5.



Table 5. Details of DFM test poses, their coordinates, and spatial coverage in the scene.

Pose Coordinates (x,y, /) Description

Pose 1 (0,0,0°)

Pose 2 (—2,2,90°)
Pose 3 (2,2,-90°)
Pose 4 (0,5,180°)

Input pose set at the origin relative to the scene movement.

Covers the western (right) boundary and central zones of the scene.

Focuses on the eastern (left) boundary, ensuring coverage of the left and central areas.
Captures depth and provides a longitudinal perspective from the south.

Figure 9. The 3D diffusion pipeline leverages four camera poses to
generate up to ns samples, given the input image 7.

Handling scene depth of the generated samples. For
the 3D study, we utilized the aggregated point cloud from
the samples from the corresponding poses, and correspond-
ingly all valid 3D points in the ground-truth reconstruction,
including occluded parts of the scene, voxelized into a grid
of size 20 x 20 x 20, such that the camera position is at
the center of the grid. For the SDXIL-based study, taking a
similar approach as Chen et al. [11] to lift our representation
to 2.5D, we generated metric depths up to the far plane of
10 units using DepthAnythingv2 [80, 81], selected for its su-
perior cross-domain generalizability and compatibility with
our known camera model. This approach provided depths
within the frustum, ensuring scale consistency across the
analyses, making sure that the camera centers are aligned to
the voxel grid center for the 3D metric computations. For
the RealEstate10k dataset experiments, we used the NDC
camera intrinsics which is provided, and for the NYU Depth
V2 dataset experiments, we used the NDC camera intrinsics
that are obtained for each scene, derived from the reconstruc-
tion process. In our 2.5D study, ground truth representations
and DFM-aggregated point clouds (with associated confi-

(a) Pose 1

(b) Pose 2 (c) Pose 3 (d) Pose 4

Figure 10. DFM samples images from four different camera poses,
including the input pose, with a resolution of 128 x 128 for each
image. DFM [73] internally rescaled the original input image of
360 x 360.

dences) were culled within the camera’s frustum determined
by the camera’s pose and intrinsic parameters. Occluded
points were removed using Z-culling with a depth buffer,
ensuring only the closest points to the camera’s projection
were retained >. These points were scaled and voxelized
into a grid of size 10 x 10 x 10 from the 3D grid. The
voxel grid was indexed with the input camera positioned at a
5-unit offset from the grid center along the +z-axis *. The
projected pixels and the associated confidences were used
for 2D analysis, while the corresponding 3D points were
incorporated into the 2.5D study for voxelization. Pixels
without any projections are replaced with zero confidence.

SDXL generation details. For our experiments, we
used the publicly available Stable Diffusion XL Inpaint-

2Efficient occlusion culling methods
3Camera Calibration and 3D reconstruction documentation



Table 6. VLM Prompts for Region-Wise Queries

Region Prompt

Left “If the image frame is extended by 140 pixels to the left, is it likely that there would be a/an [OBJECT] there?
Answer strictly in: Yes/No.”

Right “If the image frame is extended by 140 pixels to the right, is it likely that there would be a/an [OBJECT] there?
Answer strictly in: Yes/No.”

Central “Is it likely that there is a/an [OBJECT] within the frame of this image? Answer strictly in: Yes/No.”

ing pipeline from the Hugging Face Diffusers library [75].
Future changes to APIs and access to this model may af-
fect reproducibility. During the 2D generation process with
SDXL, we used a fixed set of seeds for all experiments. The
input image is placed at the center of a 360 x 640 canvas with
140 pixels of masking on each side of the center 360 x 360
crop, by the image dimension of 360 x 140. An additional
filter was applied to remove cases where person(s) were
detected with a confidence score of > 0.5. Both the image
and mask are resized to 512 x 512, and was resized back to
360 x 640, to match the target dimension. In certain cases,
the combination of seed and prompt led to the generation
of NSFW content, which the model automatically rejected,
returning a blank image for the outpainted regions. These
samples were excluded from our analysis. To ensure fairness
in aggregation, we resampled till we hit the target number
for all sets in every prompt regime. We used 10 different
prompts in three different regimes, (1) with object cues in
text prompts, (2) without object cues in text prompts and (3)
no text prompts. The prompts used were:

1. Extend this indoor scene naturally to the left and right of
the given frame (with objects like [OBJECT]).

2. Extend this indoor scene on both sides (with the object:
[OBJECTY)).

3. Outpaint 140 pixels to the left and right of the room
ensuring continuity (using the object: [OBJECT]).

4. Extend the indoor scene horizontally to reveal more of
the indoor scene (including a/an [OBJECT]).

5. Add 140 pixels to both sides of the frame to expand the
indoor scene (incorporating a/an [OBJECT]).

6. Widen the indoor scene on the left and right (ensuring the
object: [OBJECT]).

7. Outpaint 140 pixels to the left and right of the given
image horizontally to create a larger view of the indoor
scene (featuring the object: [OBJECT]).

8. Expand the boundaries of the frame to the left and right
(adding a/an [OBJECT]) to maintain continuity of this
indoor scene image.

9. Extend this scene on both sides to display a broader per-
spective of the indoor scene (including a/an [OBJECT]).

10. Add to the left and right of the image, showcasing more
of the indoor setting (with a/an [OBJECT]).

Parentheses indicate object cues, which are included in
prompts with cues and omitted in prompts without cues. In
the no-text-prompt regime, the prompt field is left empty. To
ensure consistency in sampling for the ablation study, we
generate 200 such prompts in total.

D. Detailed methodology for VLM sampling

This appendix provides additional details on how we imple-
mented VLM query structuring and response processing for
the study.

Query format for VLMs.  To reduce the likelihood of
incoherent outputs caused by uncontrolled generation for
larger tokens, we restricted responses to binary “Yes” or
“No”, limiting all answers to a single token. This simplifi-
cation mitigated errors stemming from the unpredictability
of free-form responses, especially in tasks requiring spatial
reasoning. Trials with spatial queries showed significant
variability and low accuracy against ground truth, largely
due to per-voxel granularity required for 2.5D and 3D stud-
ies. Hence, we defer these experiments to future work. We
standardized queries to focus on object presence or relative
positions in 2D, tabulated in Tab. 6.

Answer retrieval pipeline.  To generate confidence val-
ues for each region-object pair, we calculated a granular
score for each region (left, right, and within the frame) based
on the fraction of “Yes” answers provided by the model, for
that region. These scores were softmax normalized across
each pixel to ensure consistency, with their sum equal to
1, and treated as model’s normalized confidence. The nor-
malized scores formed the basis of the 2D spatio-semantic
distribution, D%D , with dimensions 360 x 640, enabling a
uniform comparison across models. We employed regular ex-
pressions (regex) parsing to automate the extraction of “Yes”
or “No” answers from the model’s responses. The binary
response format minimized parsing errors during answer re-
trieval. For qualitative analysis, the normalized scores were
further re-scaled using a log-scale adjustment to emphasize
variations effectively, while maintaining parity with other
analyses.



(b) DFM-based D3P
O I 1

(c) SDXL-based D2 (d) ChatGPT-40-based D2

Figure 11. Results for an outdoor scene—object pair. The GT position is denoted by a white star.

Access dates and configurations.  Visual-language mod-
els (VLMs) were queried using an automated pipeline
between November 1%t and 2", 2024. The latest
official APIs were used for Claude 3.5 Sonnet [3]
(claude-3-5-sonnet—-20241022), ChatGPT-40 [46]
(chatgpt-4o0-latest), and Gemini 1.5 Pro [19]
(gemini-1.5-pro-latest). LLaVa-34B-v1.6 (Nous-
Hermes-2-34B) [37, 38], accessed via the Replicate APT*,
is open source (unlike the other proprietary models) but
was evaluated through APIs, as we could not perform local
inference owing to model size.

E. Additional Results

DFM sample and pose ablations.  In this section we pro-
vide all the complete ablation tables for individual datasets—
NYU Depth V2 [65] and RealEstate10k [87]. We tabulate
the results of the ablation of Diffusion with Forward Model
samples [73] in 2D Tabs. 8 and 9, in 2.5D Tabs. 10 and 11
and in 3D Tabs. 12 and 13. We apply the same random seed
to select 10 or 15 samples for random drop-outs, ensuring
consistency in the sample selection process, retaining the
points and the confidences from the input poses in all cases.

SDXL qualitative analysis. = We also provide the break-
down for the analysis of the SDXL-based analysis in
2D Tabs. 14 and 15 and the analysis in 2.5D Tabs. 16 and 17.
In Tab. 3, we tabulated the combined ablation study using the
total number of valid samples in both datasets. We present
the following metrics along with their means and standard de-
viations: normalized entropy (#), normalized cross-entropy
(H™), normalized nearest neighbor distance as a percentage
(A), 2D region-wise accuracy (A), and false negative rates
(FNR).

Additional qualitative results. In this section, we
present additional qualitative results to supplement our anal-
ysis. Samples generated using the DFM are illustrated in
Fig. 10, while those from SDXL are shown in Fig. 12. As
expected, the DFM-based model exhibits poor qualitative
performance on the NYU dataset due to its limited ability to
generalize to out-of-distribution data [73]. The DFM-based

“4Replicate LLaVa-v1.6-34B model API documentation

model, as depicted in rows 6 and 7 of Fig. 13, frequently
predicts flat distributions. While these distributions cap-
ture uncertainty and can localize the ground truth position,
their higher uncertainty reflects in the normalization pro-
cess followed by log-scaling, resulting in a wide probability
mass spread across the distribution (D%f ). For top-down
heatmaps, we visualize the maximum normalized confidence
value along the +y-axis for each column of the voxel grid.
These visualizations may show spillover into regions without
detected objects, which is an artifact of the softmax normal-
ization and voxelization processes. In some 2D heatmaps,
ground truth positions are omitted when the object is not vis-
ible in the ground truth image but is present in the scene. For
SDXL-generated samples, we observe that semantic quality
is significantly influenced by the guidance scale and the text
prompt. When object cues are provided, both qualitative and
quantitative performance improve noticeably. Conversely,
generation without object cues or prompts yields minimal
differences in quantitative results, as both scenarios result in
limited detections. The qualitative results for SDXL analysis
(column 3 in Figs. 5 and 13) are based on samples generated
using prompts that include object cues. In certain SDXL-
based heatmaps, spillovers into the central region may occur
because the detector perceives the entire object, shared be-
tween the input image and the outpainted region, as part of
the object.

Failure case analysis.  In our current DFM experiments,
57% of failures arise from object prediction errors (non-
occluded), while 43% result from detector false negatives in
ambiguous contexts (e.g., multiple doors in a corridor). No
failures stem from the inability to predict occluded objects.
SDXL-based methods with object prompts show no failures.
In VLM experiments, all failures are direct prediction errors
of the model.

Outdoor Scenes. Our framework is also applicable to
outdoor scenes. We demonstrate this with an outdoor scene
from the RealEstate10k dataset featuring the COCO object
‘car’ (Fig. 11, Tab. 7). The SDXL and VLM-based models
perform well as expected while the DFM struggles in outdoor
settings due to limited training on large-scale outdoor data,
retraining which exceeds our computational resources.



Table 7. Results for the outdoor scene—object pair in Fig. 11.

Methods 2D Experiment ‘ 2.5D Experiment ‘ 3D Experiment

H* L "l A%) L At mel H AL HL Hl A(%) 4
DFM (25 samples, 4 poses) 1.000 1.000 00 0.670 ‘ 0.998 1.000 oo ‘ 0.998 1.000 oo
SDXL (w. obj prompt) 0.891 0.771 0.000 0.670 ‘ 0.788 0.962 0.000 ‘ - - -
ChatGPT-40 0.880 0.879 0.000 0.670 - - - - - -
Claude 3.5 Sonnet 0.880 0.879 0.000 0.670 - - - - - -
Gemini 1.5 Pro 0.994 0.993 0.000 0.670 - - - - - -
LLaVa-v1.6-34b 0.999 0.998 0.000 0.670 - - - - - -

Table 8. 2D Metrics for RealEstate10k with lower number of poses and samples, used to study the trend.
Methods H* L H A(%) | FNR | AT
DFM (ng = 25,k = 4) 1.555 + 1.460 0.774 £ 0.119 5.990 + 39.470 0.032 0.747 £ 0.139
DFM (ng = 25,k = 3) 1.877 + 1.327 0.818 +0.112 18.136 £ 32.482 0.121 0.626 + 0.107
DFM (ngs = 25,k = 2) 2.328 £ 1.041 0.902 + 0.067 14.037 + 42.005 0.868 0.581 +0.182
DFM (ng = 15,k = 4) 1.736 £ 0.414 0.898 £0.117 15.334 £ 23.380 0.605 0.573 £0.198
DFM (ng = 10,k = 4) 2.247 + 1.206 0.923 £0.014 14.082 + 29.083 0.711 0.550 = 0.337
Table 9. 2D Metrics for NYU Depth V2 with lower number of poses and samples, used to study the trend.
Methods H* | H A(%) FNR | AT
DFM (ng = 25,k = 4) 1.661 £ 1.336 0.696 £ 0.128 6.217 £36.112 0.0556 0.765 + 0.236
DFM (ng = 25,k = 3) 2.053 £0.351 0.929 £0.145 20.459 +35.216 0.173 0.589 +0.340
DFM (ng = 25,k = 2) 2.691 + 1.187 0.978 £0.072 15.871 £45.028 0.900 0.545 +0.190
DFM (ns = 15,k = 4) 1.915 £0.497 0.969 = 0.030 17.242 + 25.764 0.558 0.623 +0.353
DFM (ns = 10,k = 4) 2.498 £ 1.354 0.998 £ 0.012 15.936 + 31.011 0.739 0.614 + 0.356
Table 10. 2.5D Metrics for RealEstate10k with lower number of poses and samples, used to study the trend.
Methods H* | H A(%) | FNR |
DFM (ng = 25,k = 4) 1.955 +1.033 0.530 £ 0.441 5.128 +3.042 0.032
DFM (ngs = 25,k = 3) 2.018 £0.053 0.814 £ 0.080 12.889 + 1.067 0.121
DFM (ng = 25,k = 2) 2.586 £2.650 0.996 £ 0.003 13.461 £ 1.552 0.868
DFM (ng = 15,k = 4) 2.113£0.778 0.877 £ 0.067 9.018 + 6.332 0.605
DFM (ng = 10,k = 4) 2.498 + 1.354 0.997 + 0.002 18.018 £9.607 0.711
Table 11. 2.5D Metrics for NYU Depth V2 with lower number of poses and samples, used to study the trend.

Methods H* | H A(%) FNR |
DFM (ng = 25,k = 4) 1.785 £2.101 0.610 £ 0.207 4.214 £ 2.803 0.0556
DFM (ng = 25,k = 3) 2.067 +0.093 0.798 = 0.089 11.442 £ 1.305 0.152
DFM (ng = 25,k = 2) 2.523 +2.301 0.990 + 0.005 12.786 £ 1.781 0.837
DFM (ng = 15,k = 4) 2.184 £ 0.652 0.867 £ 0.079 8.336 £6.174 0.772
DFM (ng = 10,k = 4) 2.451 £1.231 0.995 £+ 0.003 17.124 £9.403 0.808




Table 12. 3D Ablation study of DFM with different configurations of ns and k on the RealEstate10k dataset.

Methods H* | H A(%) | FNR |
DFM (ns = 25,k = 4) 2.471 +4.415 0.303 £ 0.202 9.190 £ 6.223 0.0174
DFM (ngs = 25,k = 3) 2.774 +7.210 0.412 +0.201 10.344 £+ 7.004 0.0412
DFM (ngs = 25,k = 2) 4.102 £4.815 0.508 +0.210 12.001 £ 7.350 0.321
DFM (ns = 15,k = 4) 3.718 + 4.950 0.821 4+ 0.202 11.210 £6.702 0.0645
DFM (ns = 10,k = 4) 3.210 4 3.550 0.965 4+ 0.050 13.105 £ 7.219 0.184

Table 13. 3D Ablation study of DFM with different configurations of ns and k£ on the NYU Depth V2 dataset.

Methods H* ] H A(%) | FNR |
DFM (ng = 25,k = 4) 2.062 + 3.915 0.541 £ 0.374 3.948 + 5.801 0.000
DFM (ng = 25,k = 3) 3.876 £6.235 0.768 £+ 0.426 6.572 + 6.245 0.138
DFM (ns = 25,k = 2) 6.125 + 7.325 0.983 +0.492 9.815 + 7.412 0.453
DFM (ng = 15,k = 4) 4.521 £5.813 0.912 +0.628 8.210 £+ 6.925 0.084
DFM (ns = 10,k = 4) 6.832 £ 3.750 0.965 £+ 0.702 11.582 £ 7.625 0.288

Table 14. Comparative analysis of metrics across different SDXL 2D analysis for the RealEstate10k dataset.

Methods H* | H A%) | FNR | AT

SDXL w/ object cues 1.257 4+ 2.033 0.848 £ 0.150 0.446 + 25.490 0.039 0.918 +0.147
SDXL w/o object cues 1.888 £1.904 0.882 £ 0.115 6.274 + 14.890 0.554 0.688 +0.272
SDXL w/o prompts 2.583 +4.612 0.887 £ 0.106 6.901 + 12.663 0.589 0.773 £0.276

Table 15. Comparative analysis of metrics across different SDXL 2D analysis for the NYU Depth V2 dataset.

Methods H* | H A(%) | FNR | AT

SDXL w/ object cues 1.223 £ 2.107 0.778 £ 0.212 0.510 £ 26.929 0.054 0.944 +0.142
SDXL w/o object cues 2.601 & 2.906 0.891 £ 0.011 5.649 + 15.050 0.378 0.761 £ 0.284
SDXL w/o prompts 3.555 +2.374 0.988 £+ 0.001 5.798 + 15.107 0.374 0.757 £ 0.285

Table 16. Comparative analysis of metrics across different SDXL 2.5D analysis for the RealEstate10k dataset.

Methods H* | H A(%) | FNR |
SDXL w/ object cues 1.752 +2.043 0.617 £0.305 6.277 £ 2.229 0.000
SDXL w/o object cues 1.833 £ 2.011 0.886 + 0.104 18.144 + 6.148 0.554
SDXL w/o prompts 1.874 + 1.988 0.931 +0.016 18.533 £9.178 0.589

Table 17. Comparative analysis of metrics across different SDXL 2.5D analysis for the NYU Depth V2 dataset.

Methods H* L H A(%) | FNR |
SDXL w/ object cues 1.533 £2.916 0.655 £+ 0.323 5.245 + 2.351 0.000
SDXL w/o object cues 2.612 +1.398 0.818 = 0.102 12.637 £9.184 0.378

SDXL w/o prompts 2.807 £ 1.616 0.987 £ 0.010 16.998 £+ 7.356 0.374




(b) With object prompt: bed (c) With object prompt: chair

(h) With object prompt: oven (i) With object prompt: sink

(j) No object prompt

(m) No object prompt (n) With object prompt: oven (o) With object prompt: refrigerator

Figure 12. Samples from SDXL. We prompted SDXL with and without object cues. The image within the dotted lines is the input image.
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Figure 13. Additional qualitative results. We provide additional results for different objects and their corresponding heatmaps. White stars
indicate ground truth position if applicable on the corresponding heatmap(s).



