
Odd-One-Out: Anomaly Detection by Comparing with Neighbors

Supplementary Material

This supplementary is structured as follows: we present
additional details of the proposed datasets in Appendix A,
training details in Appendix B, and additional results in
Appendix C.

A. Data Generation Details

Our proposed scene AD datasets, ToysAD-8K and PartsAD-
15K, are built upon two publicly available 3D shape datasets:
Toys4K [6] (Creative Commons and royalty-free licenses)
and ABC [1] (MIT license). For the ToysAD-8K, we se-
lected 1,050 shapes from the Toys4K dataset, focusing on
the most common real-world objects across 51 categories. A
complete list of these categories is provided in Fig. A2, and
the split of seen/unseen categories is shown in Tab. A1. On
the other hand, PartsAD-15K is a non-categorical dataset.
For this dataset, we randomly selected a subset of 4,200
shapes from the large-scale ABC. The test set of PartsAD-
15K is comprised of unseen shapes. Given a 3D mesh model
of an object, we automatically create anomalies by applying
geometric deformations as described below.
Different types of Anomalies. We consider the following
anomaly types: cracks, fractures, geometric deformations
(e.g., bumps, bends, and twists), misaligned parts (e.g., trans-
lation and rotation), material mismatch, and missing parts.
Fig. A1 depicts the distribution of different anomaly types
in our proposed dataset. Before applying deformations, we
normalize the mesh vertices to [−1, 1]. Then we synthet-
ically generate realistic cracks and fractures following [5]
to mimic the shape’s most geometrically natural breaking
patterns. For geometric deformations, we use Blender’s [7]
Simple Deform and Hook modifier to create global (e.g.,
bending and twisting) and local deformations (e.g., surface
bumps), respectively. For translation, we randomly translate
the vertices of a random part by an offset. The translation
offset for each axis is randomly sampled from a uniform
distribution of range [0.04, 0.08]. For rotational anomalies,
we apply a 3D rotational transformation to a random part.
The rotation matrix is formed using a random rotation axis
and a radian angle sampled from a uniform distribution of
range [0.2, 0.4]. The center of rotation is set to a fixed point
at one of the connecting points between the anomalous part
and the main body of the object. We also randomly change
the texture of a part or region to create a material mismatch
anomaly or completely remove a part to simulate a missing
parts anomaly. Additionally, for PartsAD-15K, we use a dif-
ferent but geometrically similar instance in the same scene as
an anomaly (referred to as ‘distinct’ in Fig. A1). To retrieve
a geometrically similar shape, we use feature-based KNN

clustering. Specifically, we extract DINOv2 features from
multi-view images (rendered from multiple fixed viewpoints)
of the 3D shapes, concatenate these features, and use the re-
sulting concatenated features to build the KNN cluster. Then,
we retrieve a similar 3D shape by querying the KNN cluster.
To ensure the retrieved shape is geometrically similar, we
calculate the Chamfer distance between the shapes and only
accept a shape if the distance is below a certain threshold.
Scene construction. For generating scenes, we use resulting
anomalies along with their normal instances. A scene can
have more than one anomaly of the same instance, or it
may not have any anomaly at all. For randomized object
placement, we first determine each object’s resting pose
by simulating a rigid body drop using Blender [7]. This
simulation process is repeated for each object instance in the
scene, including both normal and anomaly instances. Then,
we place each object instance randomly using its obtained
resting pose, while also ensuring that they do not collide with
each other. We prevent collisions by maintaining a minimum
distance between each pair of objects.
Quality checks. Our anomaly generation process is fully
automated, with multiple quality checks to ensure reliable
samples. For positional or rotational anomaly creation, we
discard and regenerate any instance where a part detaches
from the main body during deformation. Similarly, if remov-
ing a part results in an impractical shape, we try a different
part instead. For fracture anomalies, we discard the sample
where the fracture removes more than 90% or less than 10%
of an object, regenerating a new fracture in these cases. Fi-
nally, we ensure the anomalous region of an object is visible
from at least one viewpoint.
Assets. To generate a realistic scene environment, we
use PBR materials [8] for floors and HDRI environment
maps [11] for image-based lighting to illuminate scenes.
We randomly select a pair of PBR material and HDRI en-
vironment maps from the assets to randomize the scene
background. We employed Blender 2.93 [7] with Cycles ray-
tracing renderer for photo-realistic rendering. Blender 2.93
is released under the GNU General Public License (GPL, or
“free software”), and the PBR and HDRI maps are released
under the CC0 license.
Rendering and view selection. We render each scene from
various viewpoints sampled from a hemisphere around the
scene origin. The viewpoint is parameterized in spherical
coordinates where azimuth values are sampled uniformly
over [0, 2π) and elevation values are uniformly sampled in
[π/9, 2π/9]. We adjust the radius in the range [1.5, 2.5] to
ensure that all the objects in the scene are visible (even if
partially) in the rendered view.

Table A1. Dataset composition of ToysAD-8K

Categories

Seen
dinosaur, fish, frog, monkey, light, lizard, orange, boat, dog, lion, pig, cookie, panda, chicken,
orange, ice, horse, car, airplane, cake, shark, donut, hat, cow, apple, bowl, hamburger, octopus,
giraffe, chess, bread, butterfly, cupcake, bunny, elephant, fox, deer, bus, bottle

Unseen mug, plate, robot, glass, sheep, shoe, train, banana, cup, key, penguin, hammer

(b) PartsAD-15K(b) ToysAD-8K

Figure A1. Distribution of anomaly types in the proposed ToysAD-8K and PartsAD-15 datasets.

bo
ttle m
ug

ha
m

m
er cu
p

do
g

ro
bo

t
gla

ss ke
y

pla
te

pe
ng

uin
ele

ph
an

t
pig ca
ke ha

t
de

er
ap

ple
ch

es
s

fo
x

fis
h ice

br
ea

d
ba

na
na

bo
wl

sh
oe

din
os

au
r

air
pla

ne
do

nu
t

ch
ick

en
m

ou
se

sh
ar

k
or

an
ge

ho
rs

e
co

w
bu

nn
y

cu
pc

ak
e

co
ok

ie ca
r

lio
n

sh
ee

p
pa

nd
a

m
on

ke
y

ha
m

bu
rg

er
lig

ht
fro

g
oc

to
pu

s
gir

af
fe

tra
in

bo
at bu
s

bu
tte

rfl
y

liz
ar

d

Categories

0

100

200

300

400

500

600

N
um

be
r o

f s
ce

ne
s

Figure A2. Distribution of object categories in ToysAD-8K dataset.

0.7
0.75
0.8

0.85
0.9

a b c d e f a b c d g

(a) material, (b) deform, (c) crack, (d) fracture,
(e) misaligned, (f) missing, (g) distinct

ToysAD-8K-unseen PartsAD-15K

Figure A3. Anomaly detection performance (Accuracy) by anomaly
type on the ToysAD-8K and PartsAD-15 datasets.

Our framework can easily be trained with real-world man-
ufacturing scene environments. Our model relies solely on
2D supervision, making the data collection process much eas-
ier. We also do not need precise annotation of 3D bounding

boxes as they are not used during training. For annotat-
ing instance-wise anomaly labels, we can use 2D bounding
boxes, which can be projected in 3D using Visual Hull [2],
then used for coarse localization.

B. Training Details
We train our model in two stages. In the first stage, we
train it with just image and feature reconstruction losses.
In the second stage, we train the model end-to-end with
both reconstruction and binary classification losses. All the
experiments are performed on a single NVIDIA A40 GPU
with a batch size of 4, utilizing 28GB of GPU memory.
The first stage takes 36 hours to complete, followed by an
additional 24 hours for the second stage.

The ablation experiments are conducted on the same
workstation with the same GPU by removing one or a few
core components from the full method. Specifically, variant
methods A and B take 36 hours to train the first stage, while

only taking 14 hours to train the second stage. Regarding
variant method C, it takes similar 36 and 24 hours for the
two stages as in the full method.

We compare our method with Recons-Recog [4], ImVox-
elNet [3], and DETR3D [10]. For the Recons-Recog ap-
proach, we use DGCNN [9] as a feature extractor. In terms
of training time of these baseline methods, Recons-Recog
takes 10 hours to train, ImVoxelNet takes 24 hours to train,
and DETR3D takes 2 days to converge.

C. Additional Results
Fig. A4 shows a qualitative comparison with two baseline
methods: ImVoxelNet and DETR3D. Our method accurately
predicts the anomalies, while the baselines perform poorly.
In the first three examples, the baselines fail due to their
inability to compare with other objects in the scene, which is
necessary for correct predictions. In the last example, both
DETR3D and our method predict correctly, while ImVox-
elNet fails. In Fig. A5 and Fig. A6, we present additional
qualitative results on ToysAD-8K and PartsAD-15K, respec-
tively. We show a breakdown of accuracy across different
anomaly types in Fig. A3 to interpret the model’s perfor-
mance in various such scenarios.

References
[1] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis

Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In CVPR, 2019. 1

[2] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape
by space carving. In IJCV, 2000. 2

[3] Danila Rukhovich, Anna Vorontsova, and Anton Konushin.
Imvoxelnet: Image to voxels projection for monocular and
multi-view general-purpose 3d object detection. In WACV,
2022. 3

[4] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for unstruc-
tured multi-view stereo. In ECCV, 2016. 3

[5] Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind
Ramakrishnan, Yuchuan Yang, and Alec Jacobson. Breaking
good: Fracture modes for realtime destruction. In ACM
Transactions on Graphics, 2023. 1

[6] Stefan Stojanov, Anh Thai, and James M Rehg. Using shape
to categorize: Low-shot learning with an explicit shape bias.
In CVPR, 2021. 1

[7] Blender Development Team. Blender (version 3.1.0) [com-
puter software]. https://blender.org/, 2022. 1

[8] Anh Thai, Ahmad Humayun, Stefan Stojanov, Zixuan Huang,
Bikram Boote, and James M Rehg. Low-shot object learning
with mutual exclusivity bias. In NeurIPS, 2024. 1

[9] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. In ACM Transactions
on Graphics, 2019. 3

[10] Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang,
Yilun Wang, Hang Zhao, and Justin Solomon. Detr3d: 3d
object detection from multi-view images via 3d-to-2d queries.
In CoRL, 2022. 3

[11] Greg Zaal, Rob Tuytel, Rico Cilliers, James Ray Cock, An-
dreas Mischok, Sergej Majboroda, Dimitrios Savva, and Jurita
Burger. Polyhaven: a curated public asset library for visual
effects artists and game designers, 2021. 1

ImVoxelNet DETR3D Ours Ground Truth

Figure A4. We qualitatively compare our method with two baselines on the PartsAD-15K dataset. ImVoxelNet failed to detect the anomalous
object in the first example. We use the red box for wrong predictions and the green box for correct predictions.

Figure A5. Additional results on the unseen set of ToysAD-8K dataset. Each row shows multiple views of the input scene and the green box
denotes our model’s prediction. For rows 1 to 3, the anomalies are easy to spot and self-explanatory. In row 4, there are two anomalies: one
with broken outer parts at the back (see view 5), and another with a tilted roof (see views 1 and 2). For row 5, one leg is broken (see view 2).
In row 6, the eye is missing (see view 5).

Figure A6. Additional results on the PartsAD-15K dataset. Each row shows multiple views of the input scene and the green box denotes our
model’s prediction.

