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This supplementary material document provides addi-
tional details of our proposed Spatially Embedded Video
Codec (SEVC). The remainder of the supplementary mate-
rial is divided into three parts. Section A gives the configu-
ration of the traditional codec—VTM-13.2 [1]. Section B
gives the detailed network architectures of our proposed
modules. Section C gives the derivation of Euqation (1).
Section D provides additional comparison results.

A. Configuration of the Traditional Codec

When testing traditional codec—VTM-13.2 [1], the in-
put video sequences are in YUV444 format to achieve a
better compression ratio [3, 4, 8]. The YUV444 video
sequences are converted from the RGB video sequences,
which are used as the inputs of NVCs. The configuration
parameters for encoding each video are as:

• EncoderAppStatic

-c encoder lowdelay vtm.cfg

–InputFile={Input File Path}
–InputBitDepth=8

–OutputBitDepth=8

–OutputBitDepthC=8

–InputChromaFormat=444

–FrameRate={Frame Rate}
–DecodingRefreshType=2

–FramesToBeEncoded=96

–IntraPeriod={Intra Period}
–SourceWidth={Width}
–SourceHeight={Height}
–QP={QP}
–Level=6.2

–BitstreamFile={Bitsteam File Path}
–ReconFile={Output File Path}

• DecoderAppStatic

-b {Bitsteam File Path}
-o {Reconstruction File Path}

B. Network Architechture

Our SEVC is implemented based on DCVC-DC [4] but
focuses on exploiting additional spatial references for aug-
menting the contexts and latent prior.

Motion and Feature Co-Augmentation. As shown
in Figure 4, the Motion and Feature Co-Augmentation
(MFCA) module progressively improves the quality of the
base MVs and the spatial feature through several Augment
Stages. Figure a shows the architecture of one Augment
Stage. It takes two steps to augment the base MVs v̄li and
spatial feature F̄ l

i within one Augment Stage: Firstly, base
MVs v̄li, spatial feature F̄ l

i , and temporal feature F̂ l
t−1 are

fed into an Augment Unit to generate augmented base MVs
v̄li+1. Secondly, the augmented base MVs v̄li+1 leads a bet-
ter alignment of F̂ l

t−1 and the aligned F̂ l
t−1 are fed into

another Augment Unit with spatial feature F̄ l
i to generate

augmented spatial feature F̄ l
i+1. Figure b shows the archi-

tecture of one Augment Unit. This example is the Augment
Unit for motion augmentation in the largest scale, where
N l = 48. Two convolution layers with a stride equal to
2 are used to reduce the resolution and two subpixel lay-
ers [10] are used to upsample the residual back to the origi-
nal resolution.

Spatial-Guided Latent Prior Augmentation The pro-
posed latent prior ȳt is generated by adding the resid-
ual queried from multiple temporal latent representations
ŷt−1, ŷt−2, ŷt−3 to the upsampled spatial latent ŷbt . To im-
plement this, two subpixel layers are first used to upsam-
ple the spatial latent ŷbt . The upsampled ŷbt and tempo-
ral latent representations ŷt−1, ŷt−2, ŷt−3 are concatenated
and fed into several Residual Swin Transformer Blocks
(RSTBs) [7, 9] to generate the residual. Within each RSTB,
there are several Swin Transformer Layers (STLs) that uti-
lize 3D window partitions to capture correlation across the



Figure a. The network architechture of the ith Augment Stage.
The numbers in an Augment Unit refer to the number of input
channels and number of output channels. N l refers to the number
of channels in the lth scale.

Figure b. The network architecture of the Augment Unit. The
numbers in a Conv block refer to the kernel size, number of input
channels, number of output channels, and stride. This example is
the Augment Unit for motion augmentation in the largest scale.

Figure c. The network architecture of the latent prior generation.
The numbers in a Residual Swin Transformer Block (RSTB) [7]
refer to the depth, head number, window size, and the embedding
dimension.

Figure d. The network architecture of the RSTB. The numbers in a
Swin Transformer Layer (STL) refer to the head number, window
size, and the embedding dimension. STL-SW indicates STL with
shifted window partitions.

spatial and temporal dimensions. We set the head number
to 8, the window size to 8, and the embedding dimension to
128. A Swin Transformer Layer with shifted window parti-
tions is denoted as STL-SW.

In our SEVC, the Transformers are calculated on low-
resolution latent representations, which will not bring too
much computation cost. Table a gives the complexity com-
parison when different numbers of temporal latent repre-
sentations are used for augmentation. It can be observed
that introducing more temporal latent representations only

Table a. Complexity Comparison.

∆T 0 1 2 3 4

MACs 50G 75G 100G 125G 150G
1 Tested on 1080p sequences.

results in a linear complexity increase.

C. Derivation of Equation (1)

Considering downsampling the input full-resolution
video x to the low-resolution (LR) base video xb, with their
respective sources denoted as X and Xb. From a perspec-
tive of information theory [2], the mutual information be-
tween the source of xb and x is

I(Xb;X) = H(Xb)−H(Xb|X), (a)
where Xb and X denote the source of the base video and
original video. Given that xb is fully derived from x through
a fixed downsampling algorithm, The conditional probabil-
ity p(xb|x) is constant to 1. Thereby, the conditional en-
tropy

H(Xb|X) = −
∑
x

p(x)
∑
xb

p(xb|x) log p(xb|x) (b)

is constant to 0. Therefore, we can follow
I(Xb;X) = H(Xb). (c)

Furthermore, the mutual information can be expressed
equivalently as

I(Xb;X) = I(X;Xb) = H(X)−H(X|Xb). (d)
Equation (c) and (d) follow directly from there with

H(X) = H(Xb) +H(X|Xb). (e)
Equation (e) is not proposed by us, but is a conclusion well
known in scalable coding and a goal that everyone wants
to approach. However, it is non-trivial to verify it for com-
plex signals such as videos. Nevertheless, the superior per-
formance of our SEVC makes further explorations for this
conclusion.

D. Additional Results

D.1. Results on RGB PSNR with BT.709
When testing RGB videos, we use FFmpeg to convert

YUV420 videos to RGB videos, where BT.601 is em-
ployed to implement the conversion. However, BT.709
is used in [4, 5] for a higher compression ratio under a
similar visual quality. Thus we provide additional results
with BT.709 on four 1080p datasets. We focus on high-
resolution videos because a 4x downsampling process is
conducted in our spatially embedded codec, and the spatial
references with too small resolution are meaningless.

Figure e and Table b give the RD curves and BD-Rate



Figure e. Rate and distortion curves on four 1080p datasets. The Intra Period is –1 with 96 frames.

Table b. BD-Rate (%) comparison for RGB PSNR with BT.709. The Intra Period is –1 with 96 frames. The anchor is VTM-13.2 LDB.

HEVC B MCL-JCV UVG USTC-TD Average

DCVC-HEM [3] 13.4 11.4 12.5 27.1 16.1

DCVC-DC [4] –13.4 –13.5 –20.6 11.8 –8.9

DCVC-FM [5] –18.1 –15.9 –27.9 23.1 –9.7

SEVC (ours) –16.5 –24.5 –27.0 –14.5 –20.6

AEPE: 17.76AEPE: 0.00

SSIM: 1.00

AEPE: 26.10

SSIM: 0.8034 SSIM: 0.7104

RAFT GT SEVC DCVC-DC

Figure f. Comparison of reconstructed MVs and warp prediction
of DCVC-DC and ours. Fewer AEPE scores indicate higher qual-
ity MVs and higher SSIM scores demonstrate better alignment.

comparisons for four 1080p datasets with BT.709. Com-
pared to PSNR with BT.601 shown in Figure 10, although
PSNR with BT.709 is significantly higher than PSNR with
BT.601 under the same bpp, the relative bitrate savings
compared to VTM are similar. When using BT.601 and
compared to VTM, DCVC-DC achieves an average bi-
trate saving of 8.3%, DCVC-FM achieves 6.2%, and SEVC
achieves 23%. When using BT.709 and compared to VTM,
DCVC-DC averages 8.9% savings, DCVC-FM averages
9.7%, and SEVC averages 20.6%. The slight performance
degradation is attributed to the fact that the selected train set
is not constructed by BT.709 conversion.

D.2. Visualization of MVs and contexts
In order to intuitively demonstrate the improvement in

MV quality brought by our progressively augmentation, We
compare the MVs of DCVC-DC and ours using the pseudo
ground truth generated by RAFT [11]. Average Endpoint

Error (AEPE) is used to evaluate MVs quality and Structural
Similarity (SSIM) is used to measure warp quality of the
MVs. As shown in Figure f, both in subjective perception
and objective metrics, our MV is better than that of DCVC-
DC in large motion areas whose MVs are greater than 15
pixels.

As shown in Table 3, our SEVC performs much better
than DCVC-DC in sequences with large motions and sig-
nificant emerging objects. There are two main reasons for
this: On the one hand, the base MVs progressively aug-
mented by our proposed MFCA module have a higher qual-
ity than the reconstructed MVs in DCVC-DC, which im-
proves the utilization of temporal references. On the other
hand, the augmented spatial feature can provide an addi-
tional description for regions with emerging objects that are
not well described by temporal references.

As shown in Figure g, Figure h, and Figure i, the aug-
mented MVs in our SEVC have a higher warp PSNR and
a better subjective quality compared to reconstructed MVs
in DCVC-DC. However, the residuals are still large in re-
gions where new objects appear (marked in red boxes), in-
dicating that the temporal references are not rich enough
to describe the emerging objects. Therefore, temporal con-
texts in DCVC-DC fail to predict the emerging objects well.
By contrast, our SEVC utilizes an additional spatial feature,
and the augmented spatial feature complements those re-
gions. It can be observed that in the hybrid spatial-temporal
contexts, those emerging objects are well described, thus
providing a better prediction.
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(b) Reconstructed MVs in DCVC-DC

(Warp PSNR 24.46 dB)

(f) Reconstructed MVs in SEVC

(Warp PSNR 25.88 dB)
(g) Warp Frame Residual in SEVC

(c) Warp Frame Residual in DCVC-DC
(d) Largest-Scale Context in DCVC-DC

(Frame bpp 0.0904, Rec. PSNR 36.92 dB)
(a) Ref. Frame

(h) Largest-Scale Context in SEVC

(Frame bpp 0.0526, Rec. PSNR 37.16 dB)
(e) Input Frame

Ground Truth

Figure g. Visualization of the MVs and contexts in DCVC-DC and our SEVC. This example is from videoSRC22 1920x1080 24 video of
MCL-JCV [12].

Ground Truth

(c) Reconstructed MVs (DCVC-DC)
(Warp PSNR 17.31 dB)

(d) Reconstructed MVs (SEVC)
(Warp PSNR 18.19 dB)

(f) Warp Frame Residual (SEVC)

(e) Warp Frame Residual (DCVC-DC) (g) Largest-scale Context (DCVC-DC)
(0.0947 bpp for Frame, Rec. PSNR 37.55 dB)(a) Ref. Frame

(h) Largest-scale Context (SEVC)
(0.0934 bpp for Frame, Rec. PSNR 38.36 dB)

(b) Input Frame

Figure h. Visualization of the MVs and contexts in DCVC-DC and our SEVC. This example is from USTC BycycleDriving video of
USTC-TD [6].

Ground Truth

(c) Reconstructed MVs (DCVC-DC)
(Warp PSNR 30.83 dB)

(d) Reconstructed MVs (SEVC)
(Warp PSNR 31.39 dB)

(f) Warp Frame Residual (SEVC)

(e) Warp Frame Residual (DCVC-DC) (g) Largest-scale Context (DCVC-DC)
(0.0678 bpp for Frame, Rec. PSNR 36.21 dB)(a) Ref. Frame

(h) Largest-scale Context (SEVC)
(0.0458 bpp for Frame, Rec. PSNR 36.34 dB)

(b) Input Frame

Figure i. Visualization of the MVs and contexts in DCVC-DC and our SEVC. This example is from BasketballDrive 1920x1080 50 video
of HEVC B [6].
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