0 NN R W N =

R M — — = om s —m
W= O 0 Nk W= OO

0NN AW N =

—_ e e e
B W = O 0

ChatGarment: Garment Estimation, Generation and Editing
via Large Language Models

Supplementary Material

In the supplementary material, we include additional details
on training and evaluation, as well as ablation studies and
qualitative visualizations.

S1. More Implementation Details
S1.1. GarmentCodeRC

Garment Sewing Pattern. We improve the JSON-format
sewing pattern configurations provided by GarmentCode [25,
26]. The original GarmentCode JSON configuration is a
fixed-length file containing the same entries for all garments.
We optimize this by adding new features, automatically re-
moving irrelevant settings during garment construction (e.g.,
omitting skirt-related parameters for upper-body garments)
and normalizing floating-point values to [0, 1]. Here are two
GarmentCodeRC JSON files for a skirt and a pair of pants:

{

"meta": {
nupperu : "None",
"wb": "FittedWB",
"bottom": "PencilSkirt"

}7

"waistband": {
"waist" 0.501,
"width": 0.205,
"height": 5

b

"pencil-skirt": {
"length": 0.365,
"rise": 0.988
"flare":
"low_angle": 5,
"front_slit": 0.010,
"back_slit" 0.009,
"left_slit": 0.001,
"right_slit": 0.001,

"style_side_cut": "Sun"

}

JSON for a pencil skirt

"meta": {
"upper": "None",
"wb": "Nonell,
"bottom": "Pants"
}I
"pants": {
"length": 0.203,
"width": 0.062,
"flare": 0.516,
"rise": 0.816,
"cuff": {"type": "None"}
¥

} % JSON for a pair of pants

0NN R W N =

S N I S

Outfit Sewing Pattern. From real images, we see that peo-
ple often wear multiple garments, like a T-shirt and pants. In
these cases, we combine them into a single outfit represented
as a new JSON dictionary. If the subject wears one upper
and one lower garment, the model will return in this format:

{

"upperbody_garment": {
(upper garment sewing pattern)
}I

"lowerbody_garment": {
(lower garment sewing pattern)

Otherwise, if the subject wears a single whole-body gar-
ment (e.g., dresses or jumpsuits), the model will return in
the following format:

{

"wholebody_garment": {
(wholebody garment sewing pattern)
}

S1.2. ChatGarment Training Data

Training Data Overview. The training data consists of four

parts: garment reconstruction data (35%), garment descrip-

tion data (15%), garment editing data (15%), and visual

instruction tuning data (35%).

¢ Garment Reconstruction Data: Includes 20,000 simu-
lated garments with images rendered by Blender and text
labels generated by GPT-40. During training, text labels
and images are omitted from the input with a 25% proba-
bility respectively.

* Garment Description Data: Contains 38,000 SHHQ im-
ages with text descriptions generated by GPT-40.

* Garment Editing Data: Comprises 20,000 garments gen-
erated following the rules in section 3.2.

* Visual Instruction Tuning Data: Utilizes LLaVA-v1.5-
mix665k dataset'.

Training Data Generation. To create text descriptions for

the garments in our training dataset, we render front and

back images of the garments and then query GPT-40 to

generate descriptions for the images. We use the prompts

in Tab. S6 to generate descriptions for each garment part, and

use the prompts in Tab. S7 to generate descriptions for all

visible garment parts in the image. Additionally, we provide

several examples from our dataset, including low-level and

!iuhaotian/LLaVA-Instruct-150K

https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K

high-level garment descriptions, as well as garment editing
descriptions; see in Fig. S1.

As described in Sec. 3, we construct question and answer
pairs to finetune a multimodal LLM. Specifically, we build
two datasets: an image-reconstruction dataset and a sewing
pattern editing dataset. Text-based generation data is de-
rived by removing the images from the image-reconstruction
dataset. Detailed question lists of these datasets are illus-
trated in Tabs. S1 to S4 respectively. Example textual an-
swers are shown in Tab. S5, where [Sewing pattern
without floats] referstoaJSON configuration where
all float values are replaced with “0”. Since the projection
layer is used to calculate numeric values in the sewing pat-
tern, it is unnecessary to output these numeric values directly
in the textual answers. Replacing them with “0” simplifies
the training process.

“<image> Can you estimate the outfit sewing pattern code in
the image?”

“<image> Please estimate the outfit sewing pattern code.”
“<image> Provide the sewing pattern codes for the garments
according to the image.”

“<image> What is the sewing pattern codes for the outfit
shown in the image?”

e “<image> Could you tell the outfit sewing pattern codes for
the garments?”

Table S1. Example questions for image reconstruction.
<image> is the placeholder token of the input image.

“<image> Can you estimate the outfit sewing pattern code
based on the image and the Json-format garment geometry
description? [Garment descriptions]”

“<image> Please estimate the outfit sewing pattern code based
on the image and the garment geometry descriptions in Json
format. [Garment descriptions]”

“<image> Provide the sewing pattern codes for the garments
according to the image and the Json-format garment geometry
description. [Garment descriptions]”

“<image> What is the sewing pattern codes for the outfit ac-
cording to the image and the Json-format garment geometry
description? [Garment descriptions]”

“<image> Could you tell the outfit sewing pattern codes for
the garments based on the image and the garment geometry
descriptions in Json format? [Garment descriptions]”

Table S2. Example questions for text-guided image reconstruc-
tion. [Garment descriptions] refers to garment descrip-
tions.

“Can you estimate the outfit sewing pattern code based on
the Json-format garment geometry description? [Garment
descriptions]”

“Please estimate the outfit sewing pattern code based on the
garment geometry descriptions in Json format. [Garment
descriptions]”

“Provide the sewing pattern codes for the garments according to
the image and the Json-format garment geometry description.
[Garment descriptions]”

“What is the sewing pattern codes for the outfit according to
the Json-format garment geometry description? [Garment
descriptions]”

¢ “Could you tell the outfit sewing pattern codes for the garments

based on the garment geometry descriptions in Json format?
[Garment descriptions]”

Table S3. Example questions for text-based garment generation.
[Garment descriptions] refers to garment descriptions.

“Adjust the old sewing pattern according to the text de-
scriptions. The old garment sewing pattern is: [O1ld
sewing pattern]. And the text descriptions are: [Text

descriptions].”

“Adjust the old sewing pattern [O1d sewing pattern]

according to the text descriptions [Text d
without modifying other parts.”

“Here is an old garment sewing pattern: [Old sewing
pattern]. Modify the pattern to align with the text de-
scriptions: [Text ~iptions]| without changing other
parts.”

“Update the old sewing pattern following the text descriptions:
. The old garment sewing pattern

2

"riptions]

[Text descriptions
is: [01d sewing pattern]

Table S4. Instructions for garment editing.. [01d sewing
pattern] refers to the initial garment sewing pattern to be edited,
and [Text descriptions] refers to the editing instructions.

“«

[Sewing pattern without floats].”

“Itis [Sewing pattern without floats].”

2

“Sure, itis [Sewing pattern without floats]
“The sewing pattern is [Sewing pattern without
floats].”

“The estimated sewing pattern is [Sewing pattern
without floats].

Table S5. Example textual answers for reconstruction, genera-
tion, and editing. [Sewing pattern without floats]
refers to a simplified sewing pattern in which numeric values are
replaced with “0”.

Text labels: {
“upper garment” : |
“blouse” : {
“width” : [“wide”],

Text labels: {
"upper garment": |
"hood“, "long sleeves , wide garment, with a hood"],

“length” : [“normal”], "lower garment": |

“sleeves” : ["skirt”, "short length” , “normal width”] l
“elbow-length sleeves”, }
“loose sleeves”, . .
“straight sleeves”], (B). High-level garment labeling

“collar" : [V-neck] Text labels:

LT [l Rl Change the garment sewing pattern by modifying
“loose fit, flowy design, open neckline”], [5

[
“lower garment”: |
"skirt", {
"width“ : ["normal"],
"length” : ["long"],
"waist” : ["normal waist"],
"skirt hems” : ["straight hem"] },
"ankle-length, fitted design, simple hemline"]]

(A). Low-level garment labeling

'long sleeves,

'sleeves are wide’,

'sleeves are straight,
'sleeves reach to the wrists’,
'sleeves have a simple hem’,
'sleeve width is uniform from shoulder to wrist’

while keeping other parts unchanged.

(C). Garment editing

Figure S1. Dataset samples include low-level, high-level, and garment editing descriptions.

“I will provide an image of a human model wearing the
[garment name]. The top two subfigures show the front
and back views of the model (from left to right), while
the bottom two subfigures show the zoomed-in view of
the front and back views of the [garment name]. Please
ONLY focusonthe [part name] onthe [garment name].

Please describe the geometries and structures of the [part
name] on the [garment name] according to the image.
Strictly avoid mentioning other garment parts. Strictly avoid
mentioning color, texture, seams, and material.

Return a Json LIST of several phrases, each describing a geo-
metric feature of the [part name], in the Json list format:
[geometry feature 1, geometry feature 2, geometry feature 3, ...].”

Table S6. GPT-40 prompts for generating garment part labels in
an image. [garment name] refers to the name of the garment
and [part name] refers to the name of the garment part.

S1.3. Training Details

We use LLaVA-1.5V-7B [34] as our base VLM, integrat-
ing CLIP for vision encoding and Llama 2 [55], fine-tuned
on conversational data, as the LLM backbone. We freeze
the vision encoder and projection layers while finetune the
LLM using LoRA [18]. The sewing pattern projection layer
is a two-layer (5120 x 76) MLP. The model is trained for
40 epochs, 500 steps per epoch, using the AdamW opti-
mizer [22] with a learning rate of 1e-4. Training is done with
a batch size of 4 per device on 4 NVIDIA H100 GPUs.

S1.4. Inference Details

For image-based reconstruction, we apply the Chain-of-
Thoughts (CoT) [58] for ChatGarment. Specifically, we first
prompt ChatGarment to generate a detailed, JSON-format
text description of the outfit in the image. The generated
text descriptions are combined with the input image to esti-
mate the final garment JSON configuration. Please see CoT
prompts in Tab. S8.

S1.5. Rule-based Simulation Control

ChatGarment demonstrates garment estimation and editing
capabilities. The next step for artists is often simulating real-
istic garment movement. While existing tools need precise
physical parameters to achieve desired deformations, we
develop a rule-based method to derive material-specific pa-
rameters from text or images. This leverages LLM reasoning
to map garment characteristics to simulation inputs.

We use C-IPC [29] as the simulator because of its strong
capability in dealing with complex interactions between the
human body and garments. C-IPC requires several phys-
ical parameters like density, stretching stiffness, bending
stiffness, and thickness, which are specific to the simulator
and not directly derived from real-world measurements. To
bridge this gap, we propose a hierarchical mapping approach.
This involves initially matching inferred material properties
to predefined material classes, followed by parameter re-
finement within each class. For initialization, we prompt
GPT-40 to identify the closest material match from a set

I will provide one image of a human model wearing several garments. Describe the outer layer garments the models are wearing. In each image, the
model may wear one upper garment and one lower garment, or the model may wear a single wholebody garment. Avoid describing extra accessories
such as the scarves, socks, watch, badges, and etc. We have known that the model wears [garment types].

For each garment, you should generate THREE strings.
In the first string, describe the garment type (If THE SUBJECT HAS NAME, INCLUDE ITS NAME FIRST!);
Example phrases for the first string: “hood”, " T-shirt”, "jacket”, “tuxedo”, etc.

In the second string, describe the structures of the garment (DO NOT INCLUDE ANY INFO ABOUT THE HUMAN MODEL AND THE COLOR
OF THE GARMENT) in the format of a dict.

Select the keys from the following list: ['width’, "length’, ’sleeves’, "pant legs’, *waist’, ’skirt hems’, ’skirt hems’, *collar’, "hood’, *waist’, ...]
In the value of the dict, please use several different short phrases in a list with the following tips:

Describe the width of the garment: wide, normal, narrow, etc.

Describe the length of the garment: long, normal, short, etc.

Describe the length and width of the sleeves: long, normal, short, tight, loose sleeveless, etc.

Describe the detailed struture of the sleeves. Example: “asymmetrical sleeves”, “straight sleeves”, "’puff sleeves”, “three-quater sleeves
sleeves”, etc.

Describe the length and width of the legs of trousers: long, normal, short, tight, loose legs, etc.

Describe the detailed struture of the pant legs. Example: “asymmetrical legs”, "straight legs”, "flared legs”, “cropped legs”, “cuffed legs”, etc.
Describe the length and width of the dress: long, normal, short, tight, loose, etc.

Describe the detailed struture of the skirt hems. Example: “straight hem”, ”A-line hem”, ”’pleated hem”, "pencil hem”, “’slit hem”, etc.
Describe the detailed struture of the neck or collar. Example: “crew neck”, ”V-neck”, “turtle neck”, “collarless”, etc.

Describe the detailed struture of the hood. Example: “normal hood”, "cape hood”, ”cowl hood”, etc.

3 9,

, Zaccordion

An example of the dict description for a T-shirt is:
’width’: ["wide’], ’length’: ['normal’], ’sleeves’: ["elbow-length sleeves’, 'tight sleeves’, *accordion sleeves’], *collar’: [’crew neck’], *hood’: ['no
hood’]

An example of the dict description for a skirt is:
width’: ["wide’], "length’: ['knee-length’], *waist’: ["high waist’], ’skirt hems’: ["pencil hem’, ’pleated hem’]

In the third string, describe the extra detailed structures of the garment (DO NOT INCLUDE ANY INFO ABOUT THE HUMAN MODEL AND
THE COLOR OR PATTERN OF THE GARMENT) that are missing in the second string using several different short phrases split by °,”. Example
phrases for the third string: “pleated skirt”, “high-waist”, ”zipper closure”, “frayed hem”, “mid-rise waist”, etc.

Please strictly avoid mentioning color, texture, and material.

In the image, if the model is wearing one upper garment and one lower garment, return the results in the following format: “upper garment”:
[upper garment type, upper garment geometric features, extra features], “lower garment”: [lower garment type, lower garment geometric features,
extra features]. Otherwise, the model is wearing a single wholebody garment , return the results in the following format: "wholebody garment”:
[wholebody garment type, wholebody garment geometric features, extra features]. Only return the JSON dictionary in the above format with a
length of 1 or 2.”

Table S7. GPT-40 prompts for generating labels for all visible garment parts in an image. [garment types] refers to the types of

the garments the model is wearing.

of predefined material classes (see Tab. S9). The physics

parameters for the target material are initially set based on
the matched material, after which we further refine specific
parameters that significantly impact the simulation behavior.

Our analysis demonstrates that four primary parameters,
membE (stretching stiffness), bendE (bending stiffness), den-
sity, and thickness, show strong correlations with the high-
level descriptors: rigid/soft, heavy/light, wrinkle/smooth, and
perceived thickness. Moreover, LLM can effectively com-
pare high-level material performance rather than directly

estimating precise parameter values. Based on these correla-
tions, each physical parameter is decoupled and individually
mapped to its respective descriptor. We then ask GPT-40 to
assign scores ranging from 1 to 10 for these high-level de-
scriptors. These scores are used to adjust the corresponding
physical parameters based on the score differences between
the target material and the initial matched material, as de-
scribed by the following equations:

e “<image> Can you describe the garment outfits in in image in
the Json format?”

e “<image> Can you estimate the outfit sewing pattern code
based the image and the Json format garment geometry descrip-
tion? [Garment descriptions]”

Table S8. GPT-40 CoT prompts for generating sewing patterns
from images. [Garment descriptions] refers to the tex-
tual descriptions of garments generated from the first question.

e “<image> Can you infer the garment material from the pro-
vided image input ? ”

e “<existing material 1list> Based on your inference,
can you identify the material from the provided list that most
closely matches the inferred physical properties ? ”

Table S9. GPT-40 prompts for generating materials from images.
<existing material 1ist> refers to the list of predefined
materials. These prompts are used to initially infer the garment
material from the existing material list and the provided image.

Dress4D CLoSE
Methods
CD () F-Score(T) | CD(]) F-Score(T)
LLaVA-13B 3.73 0.78 2.54 0.784
LLaVA-7B 3.06 0.78 2.94 0.790

Table S10. Ablation study: effect of multimodal LLM backbones.
Models utilizing LLaVA-7B and LLaVA-13B backbones demon-
strate comparable performance on the two datasets.

log memb = cv,, Agof; - log membyyse 2
log bendE = a Ajigh - log bendEpase (€)

density = g Agmooth - density,.)
thickness = ¢ Ahickness - thicknessp,se (&)

where A, denotes the score differences derived from the
inferred descriptors, allowing for refined adjustments of each
parameter based on the closest matched material.

S2. Ablation Study Details

Multimodal LLM backbones. As shown in Tab. S10, the
LLaVA-7B and LLaVA-13B models achieve comparable
results. For efficiency, we use the LLaVA-7B model for the
other experiments in our paper.

Training Data. To assess the impact of part-level garment
description datasets, we train a model (ChatGarment*) exclu-
sively on general garment descriptions. For image-based re-
construction, we continue to use the Chain-of-Thoughts [58]
approach, prompting the model with a text description of
the given garment as the first step. As shown in Tab. S11,

Dress4D CLoSE
Methods
CD () F-Score(T) | CD(]) F-Score(T)
ChatGarment * 4.04 0.79 4.06 0.76
ChatGarment 3.06 0.78 2.94 0.79

Table S11. Ablation analysis of different training datasets. Chat-
Garment * is only trained on high-level garment description datasets
and exhibits poorer image reconstruction performance.

(e (f) (g) (h)

Figure S2. Examples of GarmentCodeRC garments. The col-
lection includes a high-waisted skirt (a), fitted pant legs (b), an
open-front jacket (c), and various complex designs of dresses, shirts
and skirts (d-h).

the absence of part-level description datasets adversely af-
fects image reconstruction results. In the Dress4D dataset
[57], ChatGarment* exhibits a worse Chamfer distance but
a slightly higher F-Score. In the CLoSE dataset [2], Chat-
Garment* performs worse on both metrics.

S3. More Results
S3.1. GarmentCodeRC

GarmentCode [25, 26] is an expressive DSL that can model
complex garments with geometric details, including various
cuts, frills, and pleats. Built upon GarmentCode, our pro-
posed GarmentCodeRC further enhances support for open-
front jackets, high-waisted skirts, and fitted pant legs. Exam-
ples of GarmentCodeRC garments are shown in Fig. S2.

S3.2. Text-based Generation

We provide qualitative examples of text-based garment re-
construction results in Fig. S3, using the same prompt format
as DressCode [16]. Compared to DressCode, ChatGarment
accurately generates garments with correct lengths, widths,
and detailed features. In contrast, DressCode occasionally
produces incorrect garment types, inaccurate sizes, and miss-
ing details.

Prompts: skirt, long length,
narrow width

Prompts: tank top, sleeveless,
normal length, narrow

Prompts: shirt, long sleeves,
narrow fit, normal length

Prompts: sweater, long sleeves;
normal width, normal length

DressCode Ours

Prompts: T-shirt, long sleeves

1)
m
L)
M

DressCode Ours

Prompts: skirt, short length,
wide pleats, normal waist

Prompts: dress, long sleeves,
normal dress length, wide skirt

Prompts: skirt, short, pleated

Figure S3. Text-based generation results. ChatGarment follows the instruction more accurately, generating more precise details (types,

sleeves, length, etc.) compared to DressCode [16].

/N

Input Ours

Ours

Input Ours

Figure S4. Single-turn Image-based Garment Reconstruction. ChatGarment generates valid garments directly from the input images.

S3.3. Single-turn Image-based Reconstruction

In our experiment, we apply the Chain-of-Thought [58]
method for optimized performance. However, ChatGarment
also supports direct image-based reconstruction in a single-
turn conversation. In this setup, ChatGarment is prompted
to generate the garment JSON file directly from the input
image. Qualitative examples are provided in Fig. S4.

S3.4. Rule-based Simulation Control

We present qualitative examples of rule-based simulation
control in Fig. S5. The simulation parameters are aligned
with the material characteristics in the input image as de-
scribed in Sec. S1.5. Leveraging the high-level descriptors in
our rule-based approach, we can also modify the simulation
behavior to make the garment deform like other materials.
For instance, decreasing the stiffness (Stiffness|) results in
a softer garment with more pronounced wrinkles and larger
deformations under the same motion. Conversely, increas-

ing the stiffness (Stiffnesst) produces a garment with rigid
material properties, making it less prone to stretching.

S3.5. Speed analysis of ChatGarment

We analyze garment reconstruction time on an A100 GPU.
The process consists of three main stages: LLM decoding
(12.1s), GarmentCode generation (3.5s), and sewing pattern
stitching (33.9s). The primary bottleneck is the Warp-based
sewing pattern stitching [25, 41] stage.

S4. Failure Cases and Future Work

As shown in Fig. S6, ChatGarment occasionally struggles to
edit specific garment parts without affecting other areas. For
example, when adjusting the length of a skirt as requested,
slight unintended changes may occur in the upper-body T-
shirt. Additionally, in image-based garment reconstruction,
it may fail to capture intricate details. While it can accu-
rately identify the garment type as a skirt and estimate its

Ours Stiffness,

ﬁ
;

Stiffness Ours

Stiffness |,

Stiffness T

Figure S5. Rule-based Simulation Control. We apply our rule-based method to estimate the simulation parameters corresponding to the
input images. This approach also allows control over different physical deformation behaviors, such as those of soft materials like silk

(Stiffness|) and rigid materials like denim (Stiffness?).

N
f I
/ | Prompts: Change the skirt to | :
=) | ashort skirt and keep other I-.
| garment parts unchanged. I
N e e e - /
Y N GARMENT CODE
hY
“skirt”: { 1
! S -
| “WIDTH” : ..} 1

Source Input Mesh Output

Figure S6. Failure cases of sewing pattern editing and reconstruc-
tion. ChatGarment might change the irrelevant garment parts (TOP:
collars and sleeves). And ChatGarment occasionally misinterprets
the garment details (BOTTOM: skirt style).

length, it may misinterpret finer details, such as mistaking
the bottom style of the skirt for pleats. These inaccuracies
can be attributed to LLM hallucinations. Additionally, al-
though GarmentCodeRC can model complex garments with
geometric details, including various cuts, frills, and pleats,
as shown in Fig. S2, it cannot model some specific details
such as zippers and pockets.

Future improvements to our method could involve de-
veloping a more advanced programming parametric model

for sewing patterns, which could enhance both the diver-
sity of generated garments and the precision of garment
editing. And hallucinations could be reduced via Retrieval-
augmented Generation (RAG), in-context Learning (ICL),
or LLM post-training.

