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In the supplementary material, we include additional details

on training and evaluation, as well as ablation studies and

qualitative visualizations.

S1. More Implementation Details

S1.1. GarmentCodeRC

Garment Sewing Pattern. We improve the JSON-format

sewing pattern configurations provided by GarmentCode [25,

26]. The original GarmentCode JSON configuration is a

fixed-length file containing the same entries for all garments.

We optimize this by adding new features, automatically re-

moving irrelevant settings during garment construction (e.g.,

omitting skirt-related parameters for upper-body garments)

and normalizing floating-point values to [0, 1]. Here are two

GarmentCodeRC JSON files for a skirt and a pair of pants:

1 {
2 "meta": {
3 "upper": "None",

4 "wb": "FittedWB",

5 "bottom": "PencilSkirt"

6 },
7 "waistband": {
8 "waist" 0.501,

9 "width": 0.205,

10 "height": 5

11 }
12 "pencil-skirt": {
13 "length": 0.365,

14 "rise": 0.988,

15 "flare": 0.577,

16 "low_angle": 5,

17 "front_slit": 0.010,

18 "back_slit" 0.009,

19 "left_slit": 0.001,

20 "right_slit": 0.001,

21 "style_side_cut": "Sun"

22 }
23 } % JSON for a pencil skirt

1 {
2 "meta": {
3 "upper": "None",

4 "wb": "None",

5 "bottom": "Pants"

6 },
7 "pants": {
8 "length": 0.203,

9 "width": 0.062,

10 "flare": 0.516,

11 "rise": 0.816,

12 "cuff": {"type": "None"}
13 }
14 } % JSON for a pair of pants

Outfit Sewing Pattern. From real images, we see that peo-

ple often wear multiple garments, like a T-shirt and pants. In

these cases, we combine them into a single outfit represented

as a new JSON dictionary. If the subject wears one upper

and one lower garment, the model will return in this format:

1 {
2 "upperbody_garment": {
3 (upper garment sewing pattern)

4 },
5 "lowerbody_garment": {
6 (lower garment sewing pattern)

7 }
8 }

Otherwise, if the subject wears a single whole-body gar-

ment (e.g., dresses or jumpsuits), the model will return in

the following format:

1 {
2 "wholebody_garment": {
3 (wholebody garment sewing pattern)

4 }
5 }

S1.2. ChatGarment Training Data

Training Data Overview. The training data consists of four

parts: garment reconstruction data (35%), garment descrip-

tion data (15%), garment editing data (15%), and visual

instruction tuning data (35%).

• Garment Reconstruction Data: Includes 20,000 simu-

lated garments with images rendered by Blender and text

labels generated by GPT-4o. During training, text labels

and images are omitted from the input with a 25% proba-

bility respectively.

• Garment Description Data: Contains 38,000 SHHQ im-

ages with text descriptions generated by GPT-4o.

• Garment Editing Data: Comprises 20,000 garments gen-

erated following the rules in section 3.2.

• Visual Instruction Tuning Data: Utilizes LLaVA-v1.5-

mix665k dataset1.

Training Data Generation. To create text descriptions for

the garments in our training dataset, we render front and

back images of the garments and then query GPT-4o to

generate descriptions for the images. We use the prompts

in Tab. S6 to generate descriptions for each garment part, and

use the prompts in Tab. S7 to generate descriptions for all

visible garment parts in the image. Additionally, we provide

several examples from our dataset, including low-level and

1liuhaotian/LLaVA-Instruct-150K

https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K


high-level garment descriptions, as well as garment editing

descriptions; see in Fig. S1.

As described in Sec. 3, we construct question and answer

pairs to finetune a multimodal LLM. Specifically, we build

two datasets: an image-reconstruction dataset and a sewing

pattern editing dataset. Text-based generation data is de-

rived by removing the images from the image-reconstruction

dataset. Detailed question lists of these datasets are illus-

trated in Tabs. S1 to S4 respectively. Example textual an-

swers are shown in Tab. S5, where [Sewing pattern

without floats] refers to a JSON configuration where

all float values are replaced with “0”. Since the projection

layer is used to calculate numeric values in the sewing pat-

tern, it is unnecessary to output these numeric values directly

in the textual answers. Replacing them with “0” simplifies

the training process.

• “<image> Can you estimate the outfit sewing pattern code in

the image?”

• “<image> Please estimate the outfit sewing pattern code.”

• “<image> Provide the sewing pattern codes for the garments

according to the image.”

• “<image> What is the sewing pattern codes for the outfit

shown in the image?”

• “<image> Could you tell the outfit sewing pattern codes for

the garments?”

Table S1. Example questions for image reconstruction.

<image> is the placeholder token of the input image.

• “<image> Can you estimate the outfit sewing pattern code

based on the image and the Json-format garment geometry

description? [Garment descriptions]”

• “<image> Please estimate the outfit sewing pattern code based

on the image and the garment geometry descriptions in Json

format. [Garment descriptions]”

• “<image> Provide the sewing pattern codes for the garments

according to the image and the Json-format garment geometry

description. [Garment descriptions]”

• “<image> What is the sewing pattern codes for the outfit ac-

cording to the image and the Json-format garment geometry

description? [Garment descriptions]”

• “<image> Could you tell the outfit sewing pattern codes for

the garments based on the image and the garment geometry

descriptions in Json format? [Garment descriptions]”

Table S2. Example questions for text-guided image reconstruc-

tion. [Garment descriptions] refers to garment descrip-

tions.

• “Can you estimate the outfit sewing pattern code based on

the Json-format garment geometry description? [Garment

descriptions]”

• “Please estimate the outfit sewing pattern code based on the

garment geometry descriptions in Json format. [Garment

descriptions]”

• “Provide the sewing pattern codes for the garments according to

the image and the Json-format garment geometry description.

[Garment descriptions]”

• “What is the sewing pattern codes for the outfit according to

the Json-format garment geometry description? [Garment

descriptions]”

• “Could you tell the outfit sewing pattern codes for the garments

based on the garment geometry descriptions in Json format?

[Garment descriptions]”

Table S3. Example questions for text-based garment generation.

[Garment descriptions] refers to garment descriptions.

• “Adjust the old sewing pattern according to the text de-

scriptions. The old garment sewing pattern is: [Old

sewing pattern]. And the text descriptions are: [Text

descriptions].”

• “Adjust the old sewing pattern [Old sewing pattern]

according to the text descriptions [Text descriptions]

without modifying other parts.”

• “Here is an old garment sewing pattern: [Old sewing

pattern]. Modify the pattern to align with the text de-

scriptions: [Text descriptions] without changing other

parts.”

• “Update the old sewing pattern following the text descriptions:

[Text descriptions]. The old garment sewing pattern

is: [Old sewing pattern].”

Table S4. Instructions for garment editing.. [Old sewing

pattern] refers to the initial garment sewing pattern to be edited,

and [Text descriptions] refers to the editing instructions.

• “[Sewing pattern without floats].”

• “It is [Sewing pattern without floats].”

• “Sure, it is [Sewing pattern without floats].”

• “The sewing pattern is [Sewing pattern without

floats].”

• “The estimated sewing pattern is [Sewing pattern

without floats].”

Table S5. Example textual answers for reconstruction, genera-

tion, and editing. [Sewing pattern without floats]

refers to a simplified sewing pattern in which numeric values are

replaced with “0”.



Text	labels:	{
“upper	garment“  :  [ 

“blouse” : {

“width”  :  [“wide”], 

“length”  :  [“normal”], 

“sleeves”  :  [

“elbow-length sleeves”, 

“loose sleeves”,

“straight sleeves” ], 

“collar” :  ["V-neck"], 

“hood” :  ["no hood"] }, 

“loose �it , �lowy design , open neckline”],

“lower	garment”: [
"skirt", {

"width“  :  ["normal"], 

"length“ : ["long"],

"waist“  :  ["normal waist"], 

"skirt hems“  :  ["straight hem"] }, 

"ankle-length , �itted design , simple hemline"]

}

Text labels:

Change	the	garment	sewing	pattern	by	modifying	
sleeves	to	:
[ 

'long sleeves’,

'sleeves are wide’,

'sleeves are straight’,

'sleeves reach to the wrists’,

'sleeves have a simple hem’,

'sleeve width is uniform from shoulder to wrist’

] 

while	keeping	other	parts	unchanged.

Text	labels:	{
"upper	garment": [

"hood“ , "long sleeves , wide garment , with a hood"],

"lower	garment": [

"skirt“ , "short length” , “normal width”]

}

(A). Low-level garment labeling

(B). High-level garment labeling

(C). Garment editing

Figure S1. Dataset samples include low-level, high-level, and garment editing descriptions.

“I will provide an image of a human model wearing the

[garment name]. The top two subfigures show the front

and back views of the model (from left to right), while

the bottom two subfigures show the zoomed-in view of

the front and back views of the [garment name]. Please

ONLY focus on the [part name] on the [garment name].

Please describe the geometries and structures of the [part

name] on the [garment name] according to the image.

Strictly avoid mentioning other garment parts. Strictly avoid

mentioning color, texture, seams, and material.

Return a Json LIST of several phrases, each describing a geo-

metric feature of the [part name], in the Json list format:

[geometry feature 1, geometry feature 2, geometry feature 3, ...].”

Table S6. GPT-4o prompts for generating garment part labels in

an image. [garment name] refers to the name of the garment

and [part name] refers to the name of the garment part.

S1.3. Training Details

We use LLaVA-1.5V-7B [34] as our base VLM, integrat-

ing CLIP for vision encoding and Llama 2 [55], fine-tuned

on conversational data, as the LLM backbone. We freeze

the vision encoder and projection layers while finetune the

LLM using LoRA [18]. The sewing pattern projection layer

is a two-layer (5120 x 76) MLP. The model is trained for

40 epochs, 500 steps per epoch, using the AdamW opti-

mizer [22] with a learning rate of 1e-4. Training is done with

a batch size of 4 per device on 4 NVIDIA H100 GPUs.

S1.4. Inference Details

For image-based reconstruction, we apply the Chain-of-

Thoughts (CoT) [58] for ChatGarment. Specifically, we first

prompt ChatGarment to generate a detailed, JSON-format

text description of the outfit in the image. The generated

text descriptions are combined with the input image to esti-

mate the final garment JSON configuration. Please see CoT

prompts in Tab. S8.

S1.5. Rule­based Simulation Control

ChatGarment demonstrates garment estimation and editing

capabilities. The next step for artists is often simulating real-

istic garment movement. While existing tools need precise

physical parameters to achieve desired deformations, we

develop a rule-based method to derive material-specific pa-

rameters from text or images. This leverages LLM reasoning

to map garment characteristics to simulation inputs.

We use C-IPC [29] as the simulator because of its strong

capability in dealing with complex interactions between the

human body and garments. C-IPC requires several phys-

ical parameters like density, stretching stiffness, bending

stiffness, and thickness, which are specific to the simulator

and not directly derived from real-world measurements. To

bridge this gap, we propose a hierarchical mapping approach.

This involves initially matching inferred material properties

to predefined material classes, followed by parameter re-

finement within each class. For initialization, we prompt

GPT-4o to identify the closest material match from a set



I will provide one image of a human model wearing several garments. Describe the outer layer garments the models are wearing. In each image, the

model may wear one upper garment and one lower garment, or the model may wear a single wholebody garment. Avoid describing extra accessories

such as the scarves, socks, watch, badges, and etc. We have known that the model wears [garment types].

For each garment, you should generate THREE strings.

In the first string, describe the garment type (If THE SUBJECT HAS NAME, INCLUDE ITS NAME FIRST!);

Example phrases for the first string: ”hood”, ”T-shirt”, ”jacket”, ”tuxedo”, etc.

In the second string, describe the structures of the garment (DO NOT INCLUDE ANY INFO ABOUT THE HUMAN MODEL AND THE COLOR

OF THE GARMENT) in the format of a dict.

Select the keys from the following list: [’width’, ’length’, ’sleeves’, ’pant legs’, ’waist’, ’skirt hems’, ’skirt hems’, ’collar’, ’hood’, ’waist’, ... ]

In the value of the dict, please use several different short phrases in a list with the following tips:

Describe the width of the garment: wide, normal, narrow, etc.

Describe the length of the garment: long, normal, short, etc.

Describe the length and width of the sleeves: long, normal, short, tight, loose sleeveless, etc.

Describe the detailed struture of the sleeves. Example: ”asymmetrical sleeves”, ”straight sleeves”, ”puff sleeves”, ”three-quater sleeves”, ”accordion

sleeves”, etc.

Describe the length and width of the legs of trousers: long, normal, short, tight, loose legs, etc.

Describe the detailed struture of the pant legs. Example: ”asymmetrical legs”, ”straight legs”, ”flared legs”, ”cropped legs”, ”cuffed legs”, etc.

Describe the length and width of the dress: long, normal, short, tight, loose, etc.

Describe the detailed struture of the skirt hems. Example: ”straight hem”, ”A-line hem”, ”pleated hem”, ”pencil hem”, ”slit hem”, etc.

Describe the detailed struture of the neck or collar. Example: ”crew neck”, ”V-neck”, ”turtle neck”, ”collarless”, etc.

Describe the detailed struture of the hood. Example: ”normal hood”, ”cape hood”, ”cowl hood”, etc.

An example of the dict description for a T-shirt is:

’width’: [’wide’], ’length’: [’normal’], ’sleeves’: [’elbow-length sleeves’, ’tight sleeves’, ’accordion sleeves’], ’collar’: [’crew neck’], ’hood’: [’no

hood’]

An example of the dict description for a skirt is:

’width’: [’wide’], ’length’: [’knee-length’], ’waist’: [’high waist’], ’skirt hems’: [’pencil hem’, ’pleated hem’]

In the third string, describe the extra detailed structures of the garment (DO NOT INCLUDE ANY INFO ABOUT THE HUMAN MODEL AND

THE COLOR OR PATTERN OF THE GARMENT) that are missing in the second string using several different short phrases split by ’,’. Example

phrases for the third string: ”pleated skirt”, ”high-waist”, ”zipper closure”, ”frayed hem”, ”mid-rise waist”, etc.

Please strictly avoid mentioning color, texture, and material.

In the image, if the model is wearing one upper garment and one lower garment, return the results in the following format: ”upper garment”:

[upper garment type, upper garment geometric features, extra features], ”lower garment”: [lower garment type, lower garment geometric features,

extra features]. Otherwise, the model is wearing a single wholebody garment , return the results in the following format: ”wholebody garment”:

[wholebody garment type, wholebody garment geometric features, extra features]. Only return the JSON dictionary in the above format with a

length of 1 or 2.”

Table S7. GPT-4o prompts for generating labels for all visible garment parts in an image. [garment types] refers to the types of

the garments the model is wearing.

of predefined material classes (see Tab. S9). The physics

parameters for the target material are initially set based on

the matched material, after which we further refine specific

parameters that significantly impact the simulation behavior.

Our analysis demonstrates that four primary parameters,

membE (stretching stiffness), bendE (bending stiffness), den-

sity, and thickness, show strong correlations with the high-

level descriptors: rigid/soft, heavy/light, wrinkle/smooth, and

perceived thickness. Moreover, LLM can effectively com-

pare high-level material performance rather than directly

estimating precise parameter values. Based on these correla-

tions, each physical parameter is decoupled and individually

mapped to its respective descriptor. We then ask GPT-4o to

assign scores ranging from 1 to 10 for these high-level de-

scriptors. These scores are used to adjust the corresponding

physical parameters based on the score differences between

the target material and the initial matched material, as de-

scribed by the following equations:



• “<image> Can you describe the garment outfits in in image in

the Json format?”

• “<image> Can you estimate the outfit sewing pattern code

based the image and the Json format garment geometry descrip-

tion? [Garment descriptions]”

Table S8. GPT-4o CoT prompts for generating sewing patterns

from images. [Garment descriptions] refers to the tex-

tual descriptions of garments generated from the first question.

• “<image> Can you infer the garment material from the pro-

vided image input ? ”

• “<existing material list> Based on your inference,

can you identify the material from the provided list that most

closely matches the inferred physical properties ? ”

Table S9. GPT-4o prompts for generating materials from images.

<existing material list> refers to the list of predefined

materials. These prompts are used to initially infer the garment

material from the existing material list and the provided image.

Methods
Dress4D CLoSE

CD (↓) F-Score (↑) CD (↓) F-Score (↑)

LLaVA-13B 3.73 0.78 2.54 0.784

LLaVA-7B 3.06 0.78 2.94 0.790

Table S10. Ablation study: effect of multimodal LLM backbones.

Models utilizing LLaVA-7B and LLaVA-13B backbones demon-

strate comparable performance on the two datasets.

logmemb = αm∆soft · logmembbase (2)

log bendE = αb∆light · log bendEbase (3)

density = αd∆smooth · densitybase (4)

thickness = αt∆thickness · thicknessbase (5)

where ∆∗ denotes the score differences derived from the

inferred descriptors, allowing for refined adjustments of each

parameter based on the closest matched material.

S2. Ablation Study Details

Multimodal LLM backbones. As shown in Tab. S10, the

LLaVA-7B and LLaVA-13B models achieve comparable

results. For efficiency, we use the LLaVA-7B model for the

other experiments in our paper.

Training Data. To assess the impact of part-level garment

description datasets, we train a model (ChatGarment*) exclu-

sively on general garment descriptions. For image-based re-

construction, we continue to use the Chain-of-Thoughts [58]

approach, prompting the model with a text description of

the given garment as the first step. As shown in Tab. S11,

Methods
Dress4D CLoSE

CD (↓) F-Score (↑) CD (↓) F-Score (↑)

ChatGarment * 4.04 0.79 4.06 0.76

ChatGarment 3.06 0.78 2.94 0.79

Table S11. Ablation analysis of different training datasets. Chat-

Garment * is only trained on high-level garment description datasets

and exhibits poorer image reconstruction performance.

Figure S2. Examples of GarmentCodeRC garments. The col-

lection includes a high-waisted skirt (a), fitted pant legs (b), an

open-front jacket (c), and various complex designs of dresses, shirts

and skirts (d-h).

the absence of part-level description datasets adversely af-

fects image reconstruction results. In the Dress4D dataset

[57], ChatGarment* exhibits a worse Chamfer distance but

a slightly higher F-Score. In the CLoSE dataset [2], Chat-

Garment* performs worse on both metrics.

S3. More Results

S3.1. GarmentCodeRC

GarmentCode [25, 26] is an expressive DSL that can model

complex garments with geometric details, including various

cuts, frills, and pleats. Built upon GarmentCode, our pro-

posed GarmentCodeRC further enhances support for open-

front jackets, high-waisted skirts, and fitted pant legs. Exam-

ples of GarmentCodeRC garments are shown in Fig. S2.

S3.2. Text­based Generation

We provide qualitative examples of text-based garment re-

construction results in Fig. S3, using the same prompt format

as DressCode [16]. Compared to DressCode, ChatGarment

accurately generates garments with correct lengths, widths,

and detailed features. In contrast, DressCode occasionally

produces incorrect garment types, inaccurate sizes, and miss-

ing details.



Prompts: skirt, long length, 

narrow width

DressCode Ours

Prompts: tank top, sleeveless, 

normal length, narrow

Prompts: shirt, long sleeves, 

narrow fit, normal length

Prompts: T-shirt, long sleeves

Prompts: sweater, long sleeves, 

normal width, normal length

Prompts: skirt, short length, 

wide pleats, normal waist

Prompts: dress, long sleeves, 

normal dress length, wide skirt

Prompts: skirt, short, pleated

DressCode Ours

Figure S3. Text-based generation results. ChatGarment follows the instruction more accurately, generating more precise details (types,

sleeves, length, etc.) compared to DressCode [16].

Input Ours Input Ours Input Ours Input Ours

Figure S4. Single-turn Image-based Garment Reconstruction. ChatGarment generates valid garments directly from the input images.

S3.3. Single­turn Image­based Reconstruction

In our experiment, we apply the Chain-of-Thought [58]

method for optimized performance. However, ChatGarment

also supports direct image-based reconstruction in a single-

turn conversation. In this setup, ChatGarment is prompted

to generate the garment JSON file directly from the input

image. Qualitative examples are provided in Fig. S4.

S3.4. Rule­based Simulation Control

We present qualitative examples of rule-based simulation

control in Fig. S5. The simulation parameters are aligned

with the material characteristics in the input image as de-

scribed in Sec. S1.5. Leveraging the high-level descriptors in

our rule-based approach, we can also modify the simulation

behavior to make the garment deform like other materials.

For instance, decreasing the stiffness (Stiffness↓) results in

a softer garment with more pronounced wrinkles and larger

deformations under the same motion. Conversely, increas-

ing the stiffness (Stiffness↑) produces a garment with rigid

material properties, making it less prone to stretching.

S3.5. Speed analysis of ChatGarment

We analyze garment reconstruction time on an A100 GPU.

The process consists of three main stages: LLM decoding

(12.1s), GarmentCode generation (3.5s), and sewing pattern

stitching (33.9s). The primary bottleneck is the Warp-based

sewing pattern stitching [25, 41] stage.

S4. Failure Cases and Future Work

As shown in Fig. S6, ChatGarment occasionally struggles to

edit specific garment parts without affecting other areas. For

example, when adjusting the length of a skirt as requested,

slight unintended changes may occur in the upper-body T-

shirt. Additionally, in image-based garment reconstruction,

it may fail to capture intricate details. While it can accu-

rately identify the garment type as a skirt and estimate its



Input Ours Stiffness↓ Stiffness↑ Ours Stiffness↓ Stiffness↑

Figure S5. Rule-based Simulation Control. We apply our rule-based method to estimate the simulation parameters corresponding to the

input images. This approach also allows control over different physical deformation behaviors, such as those of soft materials like silk

(Stiffness↓) and rigid materials like denim (Stiffness↑).

Source Input Mesh Output

Prompts: Change the skirt to 

a short skirt and keep other

garment parts unchanged.

“skirt”: {

“WIDTH”  :  … }

GARMENT CODE

Figure S6. Failure cases of sewing pattern editing and reconstruc-

tion. ChatGarment might change the irrelevant garment parts (TOP:

collars and sleeves). And ChatGarment occasionally misinterprets

the garment details (BOTTOM: skirt style).

length, it may misinterpret finer details, such as mistaking

the bottom style of the skirt for pleats. These inaccuracies

can be attributed to LLM hallucinations. Additionally, al-

though GarmentCodeRC can model complex garments with

geometric details, including various cuts, frills, and pleats,

as shown in Fig. S2, it cannot model some specific details

such as zippers and pockets.

Future improvements to our method could involve de-

veloping a more advanced programming parametric model

for sewing patterns, which could enhance both the diver-

sity of generated garments and the precision of garment

editing. And hallucinations could be reduced via Retrieval-

augmented Generation (RAG), in-context Learning (ICL),

or LLM post-training.


