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1. Network Architecture Details
We list the detailed components of Position Gaussian Distri-
bution Prediction module in Tab. 1, which are mainly com-
posed of convolution and transposed convolution layers [2].

Layer name Components

Up&Conv1 4×4 TransConv [3×3 Conv, BN, Relu]×2

Up&Conv2 4×4 TransConv [3×3 Conv, BN, Relu, 3×3 Conv]×1

Up&Conv3 4×4 TransConv [3×3 Conv, BN, Relu, 3×3 Conv]×1

Conv4 [3×3 Conv, BN, Relu]×2 3×3 Conv

Table 1. Detailed components of Position Gaussian Distribution
Prediction module.

2. Additional Ablation Study
Impact on the performance of different LIE hyper-
parameter λ1. We investigate the performance impact
of varying the LIE hyper-parameter λ1, while keeping λ2

fixed at 1.0. As shown in Tab. 2, among the empirically
tested hyper-parameter values, λ1 = 0.01 yields the best
performance. From the perspective of minimizing the In-
formation Entropy loss LIE , the objective is to reduce the
mean amount of feature information to achieve the lowest
overall encoding cost. However, assigning excessive op-
timization weight to LIE causes the network to overlook
abundant object details to minimize the Information En-
tropy loss, which is particularly detrimental for tiny objects
with extremely limited pixel counts. Conversely, assigning
too little optimization weight results in insufficient explo-
ration of the image’s spatial structure, leading to a subopti-
mal information map for feature enhancement.

λ1 AP AP0.5 APvt APt APs

0.001 28.3 48.4 3.5 12.1 26.0
0.01 (Ours) 28.3 48.5 3.5 12.6 26.1

0.1 27.6 47.5 3.2 12.1 25.5
1.0 27.6 47.4 3.0 12.0 25.5

Table 2. Performance of different λ1, where λ2 is fixed to 1.0.
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Impact on the performance of different Lpred hyper-
parameter λ2. We evaluate the performance with varying
Lpred hyper-parameter λ2, keeping λ1 fixed at 0.01. Em-
pirically, different values of λ2 are selected for training. As
shown in Tab. 3, smaller values of λ2 impair the network’s
ability to predict the distribution map, while larger values
intensify competition among different loss terms, negatively
affecting the final classification and regression of tiny ob-
jects. Based on these results, we select λ2 = 1.0 as the
optimal value.

λ2 AP AP0.5 APvt APt APs

0.01 27.9 47.7 2.7 12.4 26.0
0.1 28.3 48.3 3.4 12.9 25.8

1.0 (Ours) 28.3 48.5 3.5 12.6 26.1
10.0 28.3 48.5 3.2 12.2 26.5

Table 3. Performance of different λ2, where λ1 is fixed to 0.01.

3. More Visualization Results
More Visualization Results on VisDrone2019. We pro-
vide additional visualization results on the VisDrone2019
dataset in Fig. 1. These qualitative results demonstrate that
the information map and distribution map derived from our
proposed method effectively highlight the salient regions in
the image. The information map extensively exploits the
spatial structure of the targets, while the distribution map
enables tiny objects to stand out prominently from general
objects and the background. Guided by these two maps,
the enhanced feature P

′

2 allows tiny objects to be clearly
distinguishable from the background, resulting in improved
classification and regression performance. Consequently,
our method successfully detects tiny objects at significant
distances from the drone’s perspective, whereas the base-
line method fails to capture these tiny objects due to weak
representations. These detection results further validate the
effectiveness of our approach in enhancing tiny object rep-
resentations.
Visualization Results on AI-TOD and AI-TODv2. We
present visualizations of qualitative results on AI-TOD and
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Figure 1. More visualization of qualitative results on VisDrone2019. (a)-(c) are estimated information map, predicted distribution map and
final enhanced feature, (d)-(f) are the detection results of DetectoRS [1], our method and GT, dotted boxes are drawn for better comparison.
Best viewed on screen with zoom.

Figure 2. More visualization of qualitative results on AI-TOD. Images are padded if necessary. Dotted boxes are drawn for better compar-
ison, and dotted boxes are amplified for clearer observation due to targets’ extremely limited pixel occupancy. Best viewed on screen with
zoom.



Figure 3. More visualization of qualitative results on AI-TODv2. Images are padded if necessary. Dotted boxes are drawn for better
comparison, and dotted boxes are amplified for clearer observation due to targets’ extremely limited pixel occupancy. Best viewed on
screen with zoom.

AI-TODv2, as shown in Fig. 2 and Fig. 3, respectively.
The annotated targets in these datasets are extremely tiny,
posing significant challenges to generic detectors. As seen
in Fig. 2(d) and Fig. 3(d), the baseline generic detector
fails to detect most tiny objects, primarily due to the dif-
ficulty in extracting features from objects with extremely
limited pixel information. In contrast, the information map
and distribution map generated by our method effectively
highlight tiny objects, identifying regions for subsequent
feature enhancement. Notably, as illustrated in Fig. 2(c)
and Fig. 3(c), the enhancement process restores the visi-
bility of previously overlooked tiny representations, con-
tributing to the improved detection results within the ampli-
fied boxes. These qualitative results further demonstrate the
generalization capability of our proposed method for tiny
object detection.
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