Graphl2P: Image-to-Point Cloud Registration with Exploring Pattern of
Correspondence via Graph Learning

Supplementary Material

1. Experimental Setting

Due to the Image-to-Point Cloud registration performance
being heavily affected by the experimental settings, we
demonstrate the details of our experimental settings and re-
implement details of other methods.

1.1. Datasets Pre-processing Details

There are several widely used public datasets such as KITTI
Odometry [1], nuScenes [2], and Oxford RobotCar [3]
for cross-modality Image-to-Point Cloud registration even
though none of them are designed for this task specifically.
Given the broader range of applications of LiDAR point
cloud, which is also more challenging to conduct Image-to-
Point Cloud registration, we follow the recent approaches
VP2P [4] and CorrI2P [5] settings to perform our experi-
ments on KITTI Odometry [1] and nuScenes [2] datasets.

KITTI Odometry [1]. We follow the train/test split in
Deepl2P [6], utilizing the 0-8 sequences for training, and 9-
10 for testing. Besides, similar to DeepI2P [6], we generate
the non-synchronized frame pairs by randomly selecting
image and point cloud frame within =10m. Specifically,
we randomly select the image and point cloud pairs
in test sequences and keep those initial relative poses
within 20m. The random 2D rotation within [—27, 27] and
translation within £10m in each direction is applied to the
LIDAR point cloud during evaluation. In summary, the ini-
tial rotation is unrestricted within the horizontal plane, and
the initial translation can reach up to 20 meters within the
horizontal plane. and translation can The image size was set
to 160x512 as[4] and the point cloud size to 40960 during
training and testing, respectively.

nuScenes [2]. We follow the setting utilized in CorrI2P
[5] to build point clouds set at the size of radius 80m.
Besides, we empirically remove the points whose height
is more than 2.5m. Furthermore, we leverage the offi-
cial SDK to generate non-synchronized image-point cloud
pairs, where the image frame and point cloud frame ini-
tial position are within +10m. We follow the official data
split of nuScenes to utilize 850 scenes for training and 150
scenes for testing. The registration methods are also tested
on the image and real point cloud with a large relative pose.
The random 2D rotation and translation are applied to the
LIDAR point cloud during evaluation, respectively. During
training, we downsample the image resolution to 160x320
as [4] and the point cloud size to 40960 during training and
testing, respectively.

1.2. Evaluation Metrics

Evaluation metrics. Following the previous works [6, 7],
we evaluate the performance of the Image-to-Point Cloud
registration with widely used metrics: Relative Translation
Error (RTE), Relative Rotation Error (RRE), Registration
Recall (RR). RTE: The mean of relative error in translation
vectors as follows:
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where 24 is the ground-truth of the translation vector, and
t. 1s the estimated translation vector.

RRE: The mean of RRE between the predicted and the
ground-truth camera pose as follows:
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where {6;}3_, are the Ruler angles of the rotation error
matrix Re_let, where R, and R are the estimated and
ground-truth of the rotation matrix.

RR: The fraction of successful registrations where the
RRE is smaller than 7,- and the RTE is smaller than 7, as
follows:
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where M is the total number of data samples. RRFE; and
RTE; are the relative rotation and translation errors of the
ith data, respectively.

To further verify the effectiveness of our proposed corre-
spondence selection method, we utilize the Inlier Ratio (IR)
of the correspondences as well. Unlike the single modality
registration task, we take the correspondence as the inlier if
the distance between the projected point and ground-truth
pixel is smaller than a threshold 74 as follows,
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where [] is the Iversion bracket and C' is the estimated
correspondences set, T is the transformation matrix (.e.,
T = [RJt]), and K is the camera intrinsic.

We follow the VP2P [4] evaluation metrics to report the
RTE, RRE, and RR performances rather than to follow the
CorrlI2P [5] settings, which removes the image-point cloud



Table S1. The effect of depth estimation methods on the KITTI datasets. Lower is better for RTE, RRE, and RMSE, and higher is better
for RR and threshold accuracy (§ < 1.25). The best results are indicated in bold, and the second bests are underlined.

Method Depth Estimation Performance Registration Performance
RMSE| | Sq.Rel.] | 0 <1.25(%) 1 RTE(m) | RRE(°) ] RR(%) 1

Baseline 2.28 0.18 97.10 0.86 = 1.90 228 £241 90.07
-BTS[8] 2.58 0.21 95.20 1.35£1.78 2.62+244 85.14
-newCRFs[9] 223 0.16 97.40 0.82 £1.25 223 £2.39 91.25
-IEbins[10] 2.01 0.14 97.90 071 £1.21 2.20 +2.46 91.48
Full 2.28 0.18 97.10 0.68 £ 0.95 1.91 £ 2.04 95.40
-BTS[8] 2.58 0.21 95.20 092+ 141 2.35£2.97 88.64
-newCRFs[9] 223 0.16 97.40 0.70 £ 1.19 2.02 +1.73 93.29
-IEbins[10] 2.01 0.14 97.90 0.57 + 1.08 2.08 + 1.85 93.02

samples with serious errors before averaging. We further
report the registration recall as VP2P [4] setting, which is
the proportion of fine registrations with RTE < 2m, RTE
< 5° on the KITTI and nuScenes datasets.

1.3. Re-implementation Details

For a fair comparison, we conduct re-implementation on
open-source methods, such as CorrI2P [5], VP2P [4],
Freereg [11], RetrI2P [12], CFI2P [7]. For the same-frame
settings, we utilize the results reported in the original pa-
per [4, 7, 12] or take the pre-train mode[5, 11] for testing
provided by the official. For the non-synchronized random-
frame settings, we retrain the model and conduct testing
based on the new settings except the VP2P and FreeReg,
for these methods only provide the source code, pre-trained
models, and pre-processing settings for the KITTI dataset.
For the RetrI2P [12], we replace their depth map genera-
tion method with the Zoe-depth [13] for a fair comparison.
For the indoor Image-to-Point Cloud registration method
2D3D-Matr [14], we utilize the results provided by [7]. For
other recent works [15, 16], we do not take into comparison
due to these methods’ lack of reliable source code.

2. Ablation study

We conduct extensive ablation studies on KITTI dataset
with the non-synchronized random-frame settings.

2.1. The Effect of Depth Estimation Methods

To study the impact of the depth estimation methods, we
compare four different monocular depth estimation meth-
ods for virtual point cloud generation as Table S1 shows.
We introduce widely used root mean squared error (RMSE),
relative squared error (Sq. Rel.), and threshold accuracy
(6 < 1.25) as the metrics to evaluate the performance of the
depth estimation methods. We take our proposed method
without virtual-spherical representation as the baseline and
replace zoe-depth [13] with other depth estimation meth-
ods, such as BTS [8], newCRFs [9], and IEbins [10]. Intu-
itively, a more effective monocular depth estimation method

can generate higher-quality virtual point clouds, thereby im-
proving cross-modal registration performance. However,
we can observe from Table S1 that when the depth estima-
tion performance reaches a relatively high level, its impact
on registration accuracy becomes minimal. Moreover, the
virtual-spherical representation can alleviate the impact of
the depth estimation effectively.

2.2. The Effect of Log-normal Distribution Approx-
imate

We conduct ablation on the distribution-based adaptive
sample module. Compared to modeling the pattern of the
LiDAR point cloud as the log-normal distribution, we use a
normal distribution to perform parameter estimation for the
LiDAR point cloud distribution. We set conducting random
sample as the baseline. The experimental results in Table S2
indicate that the log-normal distribution more closely ap-
proximates the original distribution of LiDAR points in the
depth direction.

Table S2. The eftect of Distribution Approximate.

Point RTE(m),  RRE()] RR(%).t
Baseline 133+£1.52 2.61+194 84381
+ Normal 130 £1.36 256+ 1.87  85.03
+Log-Normal 0.68 £0.95 1.91-+2.04 9540
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