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A. Model Details

Implementation In our experiments, both the keyframe

generator and the interpolation model produce sequences of

14 frames. The keyframes are spaced by S = 12 frames,

and the interpolation model uses two frames as condition-

ing. Consequently, the total number of new frames gener-

ated through interpolation is S. This configuration captures

extended temporal dependencies while maintaining compu-

tational efficiency.

We initialize the weights of the U-Net and VAE from

SVD [3] and conduct all experiments on NVIDIA A100

GPUs with a batch size of 32 for both models. The

keyframe generator is trained for 60, 000 steps, while the in-

terpolation model requires 120, 000 steps due to its greater

deviation from the pre-trained SVD. We use the AdamW

optimizer [40] with a constant learning rate of 1 × 10
−5,

following a 1, 000-step linear warm-up. For inference, we

use 10 steps, consistent with [4]. During training, the iden-

tity frame is randomly selected from each video clip.

Audio is sampled at 16, 000 Hz to align with the pre-

trained encoders (WavLM [8] and BEATs [9]), while video

frames are extracted at 25 fps and resized to 512 × 512

pixels. During training, the audio condition is randomly

dropped 20 % of the time, and the identity condition is

dropped 10 % of the time to strengthen the guidance effect.

We train the reduced model for autoguidance [32] with

16× fewer training steps. The default settings are summa-

rized in Table 8.

Parameter Value

Keyframe sequence length (T ) 14

Keyframe spacing (S) 12

Interpolation sequence length (S) 12

Keyframe training steps 60, 000

Interpolation training steps 120, 000

Training batch size 32

Optimizer AdamW

Learning rate 1× 10
−5

Warm-up steps 1, 000

Inference steps 10

GPU used NVIDIA A100

Autoguidance [32] model training steps 120, 000 / 16= 7, 500

Audio condition drop rate for CFG [21] 20 %

Identity condition drop rate for CFG [21] 10 %

Audio CFG [21] scale 3

ID CFG [21] scale 2.33

Table 8. Default model parameters and training configura-

tions.

Inference speed One limitation of our model is that it

does not yet support real-time generation. Nevertheless, our

two-stage approach is faster than competing diffusion-based

models, particularly because it allows batching, unlike au-

toregressive methods. We present an inference speed com-

parison (Table 9), measured in seconds per frame. Real-

time inference could potentially be achieved through distil-

lation methods (e.g., UFOGen), which we leave for future

work.

V-Express [59] Hallo [65] AniPortrait [63] EchoMimic [11] Keyface

3.36 1.9 0.44 0.76 0.26

Table 9. Seconds per frame comparison for baseline models.

B. Comparison with SVD

Our method builds upon Stable Video Diffusion (SVD) [3]

by introducing carefully designed architectural and task-

specific adaptations. These modifications distinctly set our

approach apart from prior work. We highlight the primary

differences below.

Audio Conditioning While SVD primarily conditions on

the initial frame to predict subsequent video frames, our

method extends this capability by conditioning on both an

identity frame and audio inputs to drive video generation.

To the best of our knowledge, we are the first to employ

conditioning based on outputs from two distinct audio en-

coders (WavLM [8] and BEATs [9], allowing simultaneous

processing of speech and non-speech audio.

Emotional Conditioning Unlike the original SVD archi-

tecture, our approach incorporates additional control over

emotional expression. We demonstrate that training emo-

tional models exclusively with pseudo-labels for valence

and arousal achieves robust and consistent performance.

Loss Functions SVD employs only the EDM loss [31].

In contrast, we use two additional pixel-space losses along

with a weighted loss that specifically targets the lower re-

gion of generated images.

Guidance Whereas SVD solely employs vanilla

classifier-free guidance (CFG) [21], we provide an in-

depth investigation into optimal guidance techniques



tailored specifically to each stage of our pipeline. We

found that, for the keyframe model, assigning different

CFG weights to identity and audio conditions leads to

better performance and improved robustness compared to

classical CFG. Additionally, since interpolation requires

greater flexibility in head movement, we employed autogu-

idance [32] to dynamically balance guidance, resulting in

enhanced overall video quality.

C. Datasets

C.1. Data details

Table 10 provides an overview of the datasets used in this

paper, detailing the number of speakers, videos, average

video duration, and total duration for each dataset. We use

a combination of publicly available datasets (HDTF [76],

CelebV-HQ [78], CelebV-Text [70]) and our own collected

data. As stated in the main paper, we use only HDTF and

the collected data for training our final model. Addition-

ally, we utilize reference frames from FEED [14] for some

qualitative results.

Dataset # Speakers # Videos Duration

Avg. (sec.) Total (hrs.)

HDTF [76] 264 318 139.08 12

CelebV-HQ [78] 3, 668 12, 000 4.00 13

CelebV-Text [70] 9, 109 75, 307 6.38 130

Collected data 824 4, 677 123.15 160

Collected data (NSV) 639 5, 701 18.94 30

Table 10. Overview of the datasets used in the study.

C.2. Preprocessing details

Even during our experimentation with alternative data

sources in the data ablation study, we aim to obtain the

highest-quality data possible. To achieve this, we propose a

data preprocessing pipeline with the following steps:

• Extract 25 fps video and 16 kHz mono audio.

• Discard low-quality videos based on a quality score com-

puted using HyperIQA [53].

• Detect and separate scenes using PySceneDetect.

• Remove clips without active speakers using Light-ASD

[39].

• Estimate landmarks and poses using face-alignment.

• Crop the video around the facial region across all frames.

Using this pipeline, we curate CelebV-HQ [78] and CelebV-

Text [70].

However, even after filtering the datasets, we found that

many samples contain editing effects and/or occlusions that

are not detected. Examples include visible hands, camera

movement, editing effects, and occlusions, which we found

occur in 20 % of videos even after our cleaning process, as

illustred in Figure 9. Since these artefacts don’t correlate

with speech, they can’t be replicated by the model, hinder-

ing performance as shown in Section 5.3.

Zoom effect Occlusions Transition effect

Figure 9. Illustration of bad examples in CelebV-HQ [78] and

CelebV-Text [70].

D. Evaluation metrics

D.1. LipScore

To evaluate the effectiveness of our proposed LipScore met-

ric compared to the traditional SyncNet metric, we con-

duct experiments introducing controlled temporal and spa-

tial perturbations to synchronized audio-visual data. The

goal is to observe how each metric responds to these per-

turbations and determine which better correlates with the

expected degradation in lip synchronization quality.

Temporal misalignment sensitivity In the first set of ex-

periments, we introduce temporal misalignments by shift-

ing the ground truth video temporally. The time shifts range

from 0 milliseconds (ms) to 1000 ms.

Figure 10 illustrates the behavior of SyncNet Confidence

and SyncNet Distance as functions of the time shift. We

observe that SyncNet Confidence and Distance remain con-

stant up to approximately 400 ms and only start to change

significantly beyond this point. This behavior is unde-

sirable, as even small misalignments (e.g., 100–200 ms)

should result in a noticeable decrease in confidence and an

increase in distance.

Figure 10. SyncNet Confidence and SyncNet Distance as func-

tions of time shift (ms).

In contrast, Figure 11 shows the LipScore metric’s re-

sponse to the same range of time shifts. LipScore exhibits a

https://github.com/Breakthrough/PySceneDetect
https://github.com/1adrianb/face-alignment


stable and consistent decrease in score as the time shift in-

creases. It begins to penalize even small temporal perturba-

tions, with a sharp decline at smaller offsets, and stabilizes

at lower scores as larger misalignments are introduced. This

behavior aligns with the expected characteristics of a robust

lip synchronization metric, demonstrating continuous sen-

sitivity to temporal misalignments without erratic or overly

abrupt changes.

Figure 11. LipScore as a function of time shift (ms).

Robustness to spatial perturbations We evaluate the ro-

bustness of the metrics to spatial transformations by intro-

ducing horizontal shifts and rotations to the video frames.

Figure 12 illustrates the percentage deviation from the

initial metric values as horizontal shifts increase. Lip-

Score remains stable, exhibiting minimal deviation across

the range of horizontal shifts, indicating its robustness to

this type of spatial perturbation. In contrast, SyncNet Con-

fidence and SyncNet Distance show significant deviations

starting at a shift of 75 pixels, highlighting their sensitivity

to horizontal displacements.

Figure 12. Effect of horizontal shifts on LipScore, SyncNet Con-

fidence, and SyncNet Distance. The plot shows the percentage

deviation from the initial value as the horizontal shift increases.

Similarly, Figure 13 shows the percentage deviation in

metric values as the rotation angle of the video frames

increases. LipScore again demonstrates robustness, with

negligible changes in its values even as the rotation angle

grows. In contrast, SyncNet Confidence and SyncNet Dis-

tance exhibit substantial deviations starting at 20 degrees,

indicating that these metrics are more adversely affected by

rotational transformations.

Figure 13. Effect of rotation angles on LipScore, SyncNet Con-

fidence, and SyncNet Distance. The plot shows the percentage

deviation from the initial value as the rotation angle increases.

WER on unseen datasets We additionally evaluate our

state-of-the-art lipreader [41] on HDTF and find that it

achieves a 21 % WER, demonstrating strong performance

on unseen data and further supporting LipScore’s validity.

D.2. Non-speech vocalization classifier

We introduce the Non-Speech Vocalization (NSV) Classi-

fier as part of our evaluation methodology. This not only

highlights the limitations of pre-trained speech-driven an-

imation methods but also demonstrates the capabilities of

our model in generating realistic NSV sequences. The

model processes video inputs and classifies them into one

of eight NSV types, plus speech.

Architecture The architecture of the system is presented

in Fig. 14. We employ a Multiscale Vision Transformer

(MViTv2) [37] backbone, augmented with two linear lay-

ers and a dropout layer with a dropout probability set

to 0.2. The MViTv2 model, pre-trained on the Kinetics

dataset [33], achieves a top-5 accuracy of 94.7 %.

Training Our model is trained using a dataset contain-

ing video clips of eight different NSV types and speech.

The eight NSV classes are: ”Mhm”, ”Oh”, ”Ah”, coughs,

sighs, yawns, throat clears, and laughter. During the

training process, video clips corresponding to any of these

classes are fed into the model. We train using the AdamW



Figure 14. The architecture used for the Non-Speech Vocalization

Classifier. The batch size is denoted as B.

optimizer with a learning rate of 1 × 10
−4, β1 = 0.9, and

β2 = 0.999. The cross-entropy loss is employed as the loss

function.

Our model achieves an F1 score of 0.7 across these nine

classes, demonstrating its effectiveness in classifying vari-

ous NSVs and speech.

NSVs performance boundaries To demonstrate and un-

derstand the effectiveness of NSVacc across individual

NSVs, we present a confusion matrix on the validation set

of the data used to train NSVacc (Fig.15, left). Although the

model achieves good overall performance, certain NSVs are

frequently confused, such as “Oh” with “Ah,” “Sigh” with

“Mhm,” and “Yawn” with “Cough.”

Additionally, we demonstrate that our model can gen-

erate visually distinct NSVs (Fig.15, right) with few con-

fusions by generating 10 videos per NSV category and

speech.

Figure 15. NSV confusion matrix for generated (left) and valida-

tion (right) videos.

E. User study details

To evaluate the performance of our proposed method, Key-

Face, against existing baselines, we conduct a comprehen-

sive user study. Participants view pairs of talking face

videos and select the one they find more realistic. This sec-

tion summarizes the results of the pairwise comparisons and

the derived metrics.

Pairwise Win Rates: The pairwise win rate matrix is pre-

sented in Figure 16. Each cell represents the proportion of

times the reference model (rows) is preferred over the com-

peting model (columns). Green indicates a high win rate

for the reference model, while red represents a lower win

rate. KeyFace is consistently preferred over baseline mod-

els, achieving a win rate of at least 64 % against all other

methods.

Figure 16. Pairwise win rates between reference (rows) and com-

peting models (columns). Green indicates higher, Red lower win

rates.

Elo ratings: Figure 17 presents the Elo ratings for all

models with 95 % confidence intervals. KeyFace achieves

the highest Elo rating, significantly outperforming the base-

lines, demonstrating its effectiveness in generating high-

quality talking face animations.

Figure 17. Elo ratings for all models with 95 % confidence inter-

vals. Higher ratings indicate better overall performance.



Elo rating distributions: The density distributions of Elo

ratings are shown in Figure 18. KeyFace exhibits a sharp,

high-density peak at the upper end, highlighting its robust-

ness and consistent user preference across evaluation sce-

narios. Echomimic, V-Express, and Hallo show significant

overlap in their results, while Aniportrait and SadTalker

consistently receive lower ratings.

Figure 18. Density distributions of Elo ratings for all models.

Peaks indicate the most probable performance levels, with higher

ratings reflecting better performance.

F. Additional ablation

Method FID ↓ FVD ↓ LipScore ↑

w/o cross attention 16.95 167.39 0.35

w/o timestep 17.20 176.83 0.28

cross attention + timestep 16.76 137.25 0.36

Table 11. Audio conditioning ablation on HDTF [76]: “Cross

attention” refers to incorporating audio through a cross-attention

mechanism, while “timestep” refers to adding the audio embed-

dings to the timestep embeddings. The best results are highlighted

in bold and default settings are highlighted in gray on all tables.

Audio mechanisms Table 11 presents an ablation study

on the impact of different audio conditioning mechanisms

on video generation quality. The results show that the audio

timestep plays a critical role in achieving accurate lip syn-

chronization, as removing it (row “w/o timestep”) results

in the lowest LipScore and the highest FVD. Adding cross

attention alone improves video quality but only marginally

enhances the LipScore compared to when the timestep is

absent. The best performance is achieved when both cross

attention and audio timestep embeddings are used together,

leading to the lowest FID, significantly lower FVD, and the

highest LipScore. This indicates that while audio timestep

embeddings are essential for achieving good lip synchro-

nization, the addition of cross attention further enhances the

overall quality of the generated videos by improving visual

coherence and temporal consistency.

Training on HDTF only To ensure a fair comparison

with baseline models, we retrain our model exclusively on

publicly available data (i.e. HDTF [76]), removing all non-

public sources. Although this leads to a decrease in per-

formance, our model still outperforms baseline methods

trained on larger datasets. We emphasize that most exist-

ing methods rely on private datasets; therefore, to maintain

fairness, we curated our dataset to have comparable scale in

terms of total hours and number of speakers as described in

Section C.1.

Method FID ↓ FVD ↓ LipScore ↑

KeyFace (HDTF only) 19.49 165.06 0.28

Table 12. Results of pipeline trained on HDTF only.

G. Limitations

One key limitation of our model, which it shares with all

baseline methods, is its performance when the initial frame

exhibits an extreme head pose. This issue primarily stems

from the lack of training data containing such extreme

poses, resulting in difficulties in reconstructing the occluded

or unseen parts of the face. As illustrated in Figure 19, al-

though the model can generate plausible videos with accu-

rate lip synchronization, it partially loses the identity of the

reference image in these scenarios. Additional failure cases

involving challenging reference frames are provided in the

supplementary videos.

Reference image Video sequence

Figure 19. An example showcasing KeyFace’s limitations in han-

dling extreme head poses.

H. Additional qualitative results

To further demonstrate the effectiveness of our method, we

provide example videos generated by KeyFace (as well as

competing methods, for comparison) in the supplementary

material:

• Non-speech vocalizations comparison. We evaluate the

model’s ability to handle eight distinct NSVs and com-

pare its performance with baseline methods, highlighting

the limitations of current state-of-the-art models and the

strengths of our approach. For a fair comparison, all ex-

amples maintain a neutral emotional tone.

• Speech and NSV comparison. We demonstrate the

model’s capability to generate both speech and NSVs



within the same video, comparing its performance to

other approaches. The results showcase the holistic na-

ture of our method, particularly in contrast to baseline

models. We maintain a neutral emotional tone for con-

sistency.

• Side-by-side comparison. We present side-by-side com-

parisons between KeyFace and baseline models, show-

casing KeyFace’s superior performance in generating re-

alistic and expressive facial animations.

• Emotion interpolation. We showcase transitions

between different emotional states, emphasizing the

model’s ability to capture subtle and nuanced expressions.

• Out-of-distribution robustness. Figure 20 illustrates the

model’s robustness in handling non-human faces, demon-

strating successful generalization to a variety of input

conditions.

• Expanded KeyFace examples. We provide additional

videos featuring KeyFace-generated animations in En-

glish and other languages, highlighting the model’s gener-

alization capabilities across different linguistic contexts.

Reference image Video Sequence

Figure 20. We present a set of examples with out-of-distribution

reference frames.
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