KeyFace: Expressive Audio-Driven Facial Animation for Long Sequences via
KeyFrame Interpolation

Supplementary Material

A. Model Details

Implementation In our experiments, both the keyframe
generator and the interpolation model produce sequences of
14 frames. The keyframes are spaced by S = 12 frames,
and the interpolation model uses two frames as condition-
ing. Consequently, the total number of new frames gener-
ated through interpolation is S. This configuration captures
extended temporal dependencies while maintaining compu-
tational efficiency.

We initialize the weights of the U-Net and VAE from
SVD [3] and conduct all experiments on NVIDIA A100
GPUs with a batch size of 32 for both models. The
keyframe generator is trained for 60, 000 steps, while the in-
terpolation model requires 120, 000 steps due to its greater
deviation from the pre-trained SVD. We use the AdamW
optimizer [40] with a constant learning rate of 1 x 1072,
following a 1, 000-step linear warm-up. For inference, we
use 10 steps, consistent with [4]. During training, the iden-
tity frame is randomly selected from each video clip.

Audio is sampled at 16,000 Hz to align with the pre-
trained encoders (WavLM [8] and BEATSs [9]), while video
frames are extracted at 25 fps and resized to 512 x 512
pixels. During training, the audio condition is randomly
dropped 20 % of the time, and the identity condition is
dropped 10 % of the time to strengthen the guidance effect.

We train the reduced model for autoguidance [32] with
16 x fewer training steps. The default settings are summa-
rized in Table 8.

Parameter Value
Keyframe sequence length (1) 14
Keyframe spacing () 12
Interpolation sequence length (.S) 12
Keyframe training steps 60,000
Interpolation training steps 120, 000
Training batch size 32
Optimizer AdamW
Learning rate 1x107°
Warm-up steps 1,000
Inference steps 10

GPU used NVIDIA A100
Autoguidance [32] model training steps 120,000 / 16 ="7,500
Audio condition drop rate for CFG [21] 20 %
Identity condition drop rate for CFG [21] 10 %
Audio CFG [21] scale 3

ID CFG [21] scale 2.33

Table 8. Default model parameters and training configura-
tions.

Inference speed One limitation of our model is that it
does not yet support real-time generation. Nevertheless, our
two-stage approach is faster than competing diffusion-based
models, particularly because it allows batching, unlike au-
toregressive methods. We present an inference speed com-
parison (Table 9), measured in seconds per frame. Real-
time inference could potentially be achieved through distil-
lation methods (e.g., UFOGen), which we leave for future
work.

V-Express [59] Hallo [65] AniPortrait [63] EchoMimic [11] Keyface
3.36 1.9 0.44 0.76 0.26

Table 9. Seconds per frame comparison for baseline models.

B. Comparison with SVD

Our method builds upon Stable Video Diffusion (SVD) [3]
by introducing carefully designed architectural and task-
specific adaptations. These modifications distinctly set our
approach apart from prior work. We highlight the primary
differences below.

Audio Conditioning While SVD primarily conditions on
the initial frame to predict subsequent video frames, our
method extends this capability by conditioning on both an
identity frame and audio inputs to drive video generation.
To the best of our knowledge, we are the first to employ
conditioning based on outputs from two distinct audio en-
coders (WavLM [8] and BEATS [9], allowing simultaneous
processing of speech and non-speech audio.

Emotional Conditioning Unlike the original SVD archi-
tecture, our approach incorporates additional control over
emotional expression. We demonstrate that training emo-
tional models exclusively with pseudo-labels for valence
and arousal achieves robust and consistent performance.

Loss Functions SVD employs only the EDM loss [31].
In contrast, we use two additional pixel-space losses along
with a weighted loss that specifically targets the lower re-
gion of generated images.

Guidance Whereas SVD solely employs vanilla
classifier-free guidance (CFG) [21], we provide an in-
depth investigation into optimal guidance techniques



tailored specifically to each stage of our pipeline. We
found that, for the keyframe model, assigning different
CFG weights to identity and audio conditions leads to
better performance and improved robustness compared to
classical CFG. Additionally, since interpolation requires
greater flexibility in head movement, we employed autogu-
idance [32] to dynamically balance guidance, resulting in
enhanced overall video quality.

C. Datasets
C.1. Data details

Table 10 provides an overview of the datasets used in this
paper, detailing the number of speakers, videos, average
video duration, and total duration for each dataset. We use
a combination of publicly available datasets (HDTF [76],
CelebV-HQ [78], CelebV-Text [70]) and our own collected
data. As stated in the main paper, we use only HDTF and
the collected data for training our final model. Addition-
ally, we utilize reference frames from FEED [14] for some
qualitative results.

Dataset # Speakers  # Videos Duration

Avg. (sec.) Total (hrs.)
HDTF [76] 264 318 139.08 12
CelebV-HQ [78] 3,668 12,000 4.00 13
CelebV-Text [70] 9,109 175,307 6.38 130
Collected data 824 4,677 123.15 160
Collected data (NSV) 639 5,701 18.94 30

Table 10. Overview of the datasets used in the study.

C.2. Preprocessing details

Even during our experimentation with alternative data
sources in the data ablation study, we aim to obtain the
highest-quality data possible. To achieve this, we propose a
data preprocessing pipeline with the following steps:

» Extract 25 fps video and 16 kHz mono audio.

¢ Discard low-quality videos based on a quality score com-
puted using HyperIQA [53].

* Detect and separate scenes using PySceneDetect.

* Remove clips without active speakers using Light-ASD
[39].

» Estimate landmarks and poses using face-alignment.

* Crop the video around the facial region across all frames.

Using this pipeline, we curate CelebV-HQ [78] and CelebV-
Text [70].

However, even after filtering the datasets, we found that
many samples contain editing effects and/or occlusions that
are not detected. Examples include visible hands, camera
movement, editing effects, and occlusions, which we found
occur in 20 % of videos even after our cleaning process, as
illustred in Figure 9. Since these artefacts don’t correlate

with speech, they can’t be replicated by the model, hinder-
ing performance as shown in Section 5.3.
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Figure 9. Illustration of bad examples in CelebV-HQ [78] and
CelebV-Text [70].

D. Evaluation metrics
D.1. LipScore

To evaluate the effectiveness of our proposed LipScore met-
ric compared to the traditional SyncNet metric, we con-
duct experiments introducing controlled temporal and spa-
tial perturbations to synchronized audio-visual data. The
goal is to observe how each metric responds to these per-
turbations and determine which better correlates with the
expected degradation in lip synchronization quality.

Temporal misalignment sensitivity In the first set of ex-
periments, we introduce temporal misalignments by shift-
ing the ground truth video temporally. The time shifts range
from 0 milliseconds (ms) to 1000 ms.

Figure 10 illustrates the behavior of SyncNet Confidence
and SyncNet Distance as functions of the time shift. We
observe that SyncNet Confidence and Distance remain con-
stant up to approximately 400 ms and only start to change
significantly beyond this point. This behavior is unde-
sirable, as even small misalignments (e.g., 100-200 ms)
should result in a noticeable decrease in confidence and an
increase in distance.
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Figure 10. SyncNet Confidence and SyncNet Distance as func-
tions of time shift (ms).

In contrast, Figure 11 shows the LipScore metric’s re-
sponse to the same range of time shifts. LipScore exhibits a


https://github.com/Breakthrough/PySceneDetect
https://github.com/1adrianb/face-alignment

stable and consistent decrease in score as the time shift in-
creases. It begins to penalize even small temporal perturba-
tions, with a sharp decline at smaller offsets, and stabilizes
at lower scores as larger misalignments are introduced. This
behavior aligns with the expected characteristics of a robust
lip synchronization metric, demonstrating continuous sen-
sitivity to temporal misalignments without erratic or overly
abrupt changes.
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Figure 11. LipScore as a function of time shift (ms).

Robustness to spatial perturbations We evaluate the ro-
bustness of the metrics to spatial transformations by intro-
ducing horizontal shifts and rotations to the video frames.

Figure 12 illustrates the percentage deviation from the
initial metric values as horizontal shifts increase. Lip-
Score remains stable, exhibiting minimal deviation across
the range of horizontal shifts, indicating its robustness to
this type of spatial perturbation. In contrast, SyncNet Con-
fidence and SyncNet Distance show significant deviations
starting at a shift of 75 pixels, highlighting their sensitivity
to horizontal displacements.
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Figure 12. Effect of horizontal shifts on LipScore, SyncNet Con-
fidence, and SyncNet Distance. The plot shows the percentage
deviation from the initial value as the horizontal shift increases.

Similarly, Figure 13 shows the percentage deviation in

metric values as the rotation angle of the video frames
increases. LipScore again demonstrates robustness, with
negligible changes in its values even as the rotation angle
grows. In contrast, SyncNet Confidence and SyncNet Dis-
tance exhibit substantial deviations starting at 20 degrees,
indicating that these metrics are more adversely affected by
rotational transformations.
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Figure 13. Effect of rotation angles on LipScore, SyncNet Con-
fidence, and SyncNet Distance. The plot shows the percentage
deviation from the initial value as the rotation angle increases.

WER on unseen datasets We additionally evaluate our
state-of-the-art lipreader [41] on HDTF and find that it
achieves a 21 % WER, demonstrating strong performance
on unseen data and further supporting LipScore’s validity.

D.2. Non-speech vocalization classifier

We introduce the Non-Speech Vocalization (NSV) Classi-
fier as part of our evaluation methodology. This not only
highlights the limitations of pre-trained speech-driven an-
imation methods but also demonstrates the capabilities of
our model in generating realistic NSV sequences. The
model processes video inputs and classifies them into one
of eight NSV types, plus speech.

Architecture The architecture of the system is presented
in Fig. 14. We employ a Multiscale Vision Transformer
(MViTv2) [37] backbone, augmented with two linear lay-
ers and a dropout layer with a dropout probability set
to 0.2. The MViTv2 model, pre-trained on the Kinetics
dataset [33], achieves a top-5 accuracy of 94.7 %.

Training Our model is trained using a dataset contain-
ing video clips of eight different NSV types and speech.
The eight NSV classes are: "Mhm”, "Oh”, "Ah”, coughs,
sighs, yawns, throat clears, and laughter. During the
training process, video clips corresponding to any of these
classes are fed into the model. We train using the AdamW
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Figure 14. The architecture used for the Non-Speech Vocalization
Classifier. The batch size is denoted as B.

optimizer with a learning rate of 1 X 1074, 51 = 0.9, and
B2 = 0.999. The cross-entropy loss is employed as the loss
function.

Our model achieves an F1 score of 0.7 across these nine
classes, demonstrating its effectiveness in classifying vari-
ous NSVs and speech.

NSVs performance boundaries To demonstrate and un-
derstand the effectiveness of NSV,.. across individual
NSVs, we present a confusion matrix on the validation set
of the data used to train NSV, (Fig.15, left). Although the
model achieves good overall performance, certain NSVs are
frequently confused, such as “Oh” with “Ah,” “Sigh” with
“Mhm,” and “Yawn” with “Cough.”

Additionally, we demonstrate that our model can gen-
erate visually distinct NSVs (Fig.15, right) with few con-
fusions by generating 10 videos per NSV category and
speech.
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Figure 15. NSV confusion matrix for generated (left) and valida-
tion (right) videos.

E. User study details

To evaluate the performance of our proposed method, Key-
Face, against existing baselines, we conduct a comprehen-

sive user study. Participants view pairs of talking face
videos and select the one they find more realistic. This sec-
tion summarizes the results of the pairwise comparisons and
the derived metrics.

Pairwise Win Rates: The pairwise win rate matrix is pre-
sented in Figure 16. Each cell represents the proportion of
times the reference model (rows) is preferred over the com-
peting model (columns). Green indicates a high win rate
for the reference model, while red represents a lower win
rate. KeyFace is consistently preferred over baseline mod-
els, achieving a win rate of at least 64 % against all other

methods.
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Figure 16. Pairwise win rates between reference (rows) and com-
peting models (columns). Green indicates higher, Red lower win
rates.

Elo ratings: Figure 17 presents the Elo ratings for all
models with 95 % confidence intervals. KeyFace achieves
the highest Elo rating, significantly outperforming the base-
lines, demonstrating its effectiveness in generating high-
quality talking face animations.
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Figure 17. Elo ratings for all models with 95 % confidence inter-
vals. Higher ratings indicate better overall performance.



Elo rating distributions: The density distributions of Elo
ratings are shown in Figure 18. KeyFace exhibits a sharp,
high-density peak at the upper end, highlighting its robust-
ness and consistent user preference across evaluation sce-
narios. Echomimic, V-Express, and Hallo show significant
overlap in their results, while Aniportrait and SadTalker
consistently receive lower ratings.
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Figure 18. Density distributions of Elo ratings for all models.
Peaks indicate the most probable performance levels, with higher
ratings reflecting better performance.

F. Additional ablation

Method FID| FVD| LipScore
w/0 cross attention 16.95 167.39 0.35
w/o timestep 1720 176.83 0.28

cross attention + timestep  16.76  137.25 0.36

Table 11. Audio conditioning ablation on HDTF [76]: “Cross
attention” refers to incorporating audio through a cross-attention
mechanism, while “timestep” refers to adding the audio embed-
dings to the timestep embeddings. The best results are highlighted
in bold and default settings are highlighted in gray on all tables.

Audio mechanisms Table |1 presents an ablation study
on the impact of different audio conditioning mechanisms
on video generation quality. The results show that the audio
timestep plays a critical role in achieving accurate lip syn-
chronization, as removing it (row “w/o timestep”) results
in the lowest LipScore and the highest FVD. Adding cross
attention alone improves video quality but only marginally
enhances the LipScore compared to when the timestep is
absent. The best performance is achieved when both cross
attention and audio timestep embeddings are used together,
leading to the lowest FID, significantly lower FVD, and the
highest LipScore. This indicates that while audio timestep
embeddings are essential for achieving good lip synchro-
nization, the addition of cross attention further enhances the
overall quality of the generated videos by improving visual
coherence and temporal consistency.

Training on HDTF only To ensure a fair comparison
with baseline models, we retrain our model exclusively on
publicly available data (i.e. HDTF [76]), removing all non-
public sources. Although this leads to a decrease in per-
formance, our model still outperforms baseline methods
trained on larger datasets. We emphasize that most exist-
ing methods rely on private datasets; therefore, to maintain
fairness, we curated our dataset to have comparable scale in
terms of total hours and number of speakers as described in
Section C.1.

Method FID| FVD ] LipScore
KeyFace (HDTF only) 19.49 165.06 0.28

Table 12. Results of pipeline trained on HDTF only.

G. Limitations

One key limitation of our model, which it shares with all
baseline methods, is its performance when the initial frame
exhibits an extreme head pose. This issue primarily stems
from the lack of training data containing such extreme
poses, resulting in difficulties in reconstructing the occluded
or unseen parts of the face. As illustrated in Figure 19, al-
though the model can generate plausible videos with accu-
rate lip synchronization, it partially loses the identity of the
reference image in these scenarios. Additional failure cases
involving challenging reference frames are provided in the
supplementary videos.

Reference image Video sequence

Figure 19. An example showcasing KeyFace’s limitations in han-
dling extreme head poses.

H. Additional qualitative results

To further demonstrate the effectiveness of our method, we
provide example videos generated by KeyFace (as well as
competing methods, for comparison) in the supplementary
material:

* Non-speech vocalizations comparison. We evaluate the
model’s ability to handle eight distinct NSVs and com-
pare its performance with baseline methods, highlighting
the limitations of current state-of-the-art models and the
strengths of our approach. For a fair comparison, all ex-
amples maintain a neutral emotional tone.

* Speech and NSV comparison. We demonstrate the
model’s capability to generate both speech and NSVs



within the same video, comparing its performance to
other approaches. The results showcase the holistic na-
ture of our method, particularly in contrast to baseline
models. We maintain a neutral emotional tone for con-
sistency.

* Side-by-side comparison. We present side-by-side com-
parisons between KeyFace and baseline models, show-
casing KeyFace’s superior performance in generating re-
alistic and expressive facial animations.

* Emotion interpolation. We showcase transitions
between different emotional states, emphasizing the
model’s ability to capture subtle and nuanced expressions.

¢ Out-of-distribution robustness. Figure 20 illustrates the
model’s robustness in handling non-human faces, demon-
strating successful generalization to a variety of input
conditions.

* Expanded KeyFace examples. We provide additional
videos featuring KeyFace-generated animations in En-
glish and other languages, highlighting the model’s gener-
alization capabilities across different linguistic contexts.
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Figure 20. We present a set of examples with out-of-distribution
reference frames.
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