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6. Ablation study

In this section, we analyze the impact of various design
choices and data configurations on the performance of our
proposed method. We focus on three aspects: (1) the im-
pact of including or excluding specific steps in the Chain of
Thought (CoT) reasoning process for the 3D task of relative
depth estimation, (2) the use of standard text tokens versus
new perception pixel tokens for the 2D task of object count-
ing, and (3) the effect of incorporating a perception token
reconstruction loss during fine-tuning.

6.1. Chain of thought steps

For our 3D task of relative depth estimation, the Chain of
Thought (CoT) questions in the fine-tuning data include two
steps: (1) identifying the coordinates or locations of the
points marked in the image, and (2) generating the depth
map and determining which point is closer to the camera
based on pixel values in the depth map. This study evalu-
ates the impact of including or excluding these steps in the
question prompts during fine-tuning.

We experiment with three variations of fine-tuning data
configurations:
1. Direct Labeling Baseline: The model is fine-tuned solely

on direct labeling data, where the question prompts di-
rectly ask which point is closer to the camera and provide
the label as the answer. These prompts do not include ei-
ther step (1) or step (2), see baselines section.

2. Step (2) Only: This model is fine-tuned with prompts
that exclude step (1) (point location identification) but
include step (2), asking the model to answer based on
the depth map alone.

3. Aurora: Our proposed Aurora model uses prompts that
include both steps (1) and (2), explicitly guiding the
model through point location identification before gen-
erating the depth map.

All models are evaluated on the harder BLINK datasets we
introduced. As shown in Tab. 4, the results demonstrate that
having both steps in the prompts provides the most signif-
icant performance improvement. This suggests that guid-
ing the model through a multi-step reasoning process in the
prompts enables it to better capture spatial relationships and
achieve more accurate depth estimations.

6.2. Text tokens vs. Perception tokens

In this ablation study, we evaluate the impact of using per-
ception tokens compared to standard text tokens for the ob-
ject counting subtask. Perception tokens are represented
in the format PIXEL X, where X is a number between

0 and 336, indicating pixel locations for object bounding
boxes. For comparison, we replace these perception tokens
with regular text tokens in the fine-tuning data, such that
PIXEL 100 is replaced with 100, and so on.

As shown in Tab. 5, models utilizing perception to-
kens achieve higher performance across all three count-
ing benchmarks: BLINK [11], SEED-Bench [23], and CV-
Bench [40]. This demonstrates the effectiveness of percep-
tion tokens in explicitly encoding spatial information for
improved counting accuracy.

6.3. Perception token reconstruction loss

The aim of this ablation study is to assess whether adding
the perception token reconstruction loss, despite its in-
creased computational cost, significantly improves model
performance. Incorporating this loss requires adding the
decoder for the specific task, which increases computation
time and resource requirements. Not using it makes the sys-
tem lighter and faster by just using the token classification
loss. Therefore, we evaluate whether the performance gains
justify the additional overhead.

To this end, we fine-tune two models based on LLaVA
1.5 13B [27] using a dataset of 20,000 samples only for
depth map generation. Each sample includes a prompt such
as ”What is the depth map for the image?” and a response
containing sequences of depth tokens. Both models are fine-
tuned for 10 epochs: one with the reconstruction loss and
one without it (both with cross entropy loss).

The reconstruction loss is computed as the mean squared
error (MSE) between the ground truth depth map, which
is the output of the VQVAE decoder when provided with
the ground truth depth tokens, and the predicted depth map,
which is generated by decoding the depth tokens produced
by the LLM. A soft merging technique is used in recon-
struction, where a ”soft token” is created by averaging the
embeddings of all potential tokens, weighted by their pre-
diction probabilities from the LLM.

The models are evaluated on two datasets: (1) 124 im-
ages from the relative depth subtask of BLINK [11], and (2)
1000 random images from the Visual Genome dataset [21],
for which depth maps were generated using Depth Any-
thing [49]. The evaluation metric is the mean squared er-
ror (MSE) between the ground truth decoded depth maps
and the depth maps reconstructed from the model’s output
tokens.

As shown in Tab. 6, the results indicate that incorporat-
ing the reconstruction loss does not significantly improve
model performance. Fig. 5 further illustrates qualitative re-
sults, highlighting the visual differences in the predicted



CoT steps

Model Coordinates Depth HardBLINK
3 Points

HardBLINK
4 Points

HardBLINK
5 Points

Direct Labeling Baseline 7 7 58.9 52.4 41.1
Step (2) only 7 3 56.4 56.4 50
AURORA (Ours) 3 3 66.9 60.5 54.8

Table 4. Performance comparison of models trained with different Chain of Thought question prompt variations for relative depth estima-
tion on the harder BLINK datasets. Models with both steps in the prompts (AURORA) achieve the best performance.

Model Token Type CV-Bench
Counting

SEED-Bench
Counting

BLINK
Counting

AURORA Standard 52.2 50.6 38.3
AURORA Perception 56.0 54.6 45.8

Table 5. Comparison of model performance using perception tokens and standard tokens for the object counting task across three bench-
marks: BLINK, SEED-Bench, and CV-Bench. Perception tokens consistently improve accuracy.

depth maps with and without the reconstruction loss. While
the reconstruction loss enforces consistency between the
generated and ground truth depth tokens, its overall contri-
bution is marginal in this setup. This study suggests that
omitting the reconstruction loss may be a more efficient
choice, especially when computational cost is a concern.
Future work could explore its impact in larger datasets or
more complex tasks to better understand its potential bene-
fits.

Mean Squared Error#
Model Recons

Loss
BLINK Visual

Genome
LLaVA 1.5 3 0.092 0.074

LLaVA 1.5 7 0.087 0.076

Table 6. MSE evaluation of models with and without reconstruc-
tion loss on subsets BLINK and Visual Genome datasets.

7. Cross-task generalization

To assess the generalizability of AURORA trained on depth
generation and chain-of-thought (CoT) data for the rela-
tive depth task, we evaluate it on a different depth-related
task. Specifically, we use the Depth subtask from CV-
Bench [40], which involves identifying which of two ob-
jects, highlighted with red and blue bounding boxes, is
closer to the camera. Similar to the BLINK evaluations for
relative depth, we remove options from question prompts in
these evaluations too.

As shown in Tab. 7, our model outperforms both the base
LLaVA 1.5 13B model and the fine-tuning baseline, demon-
strating its generalization capabilities across depth-related

Figure 5. Qualitative comparison of predicted depth maps with
and without reconstruction loss.

tasks.

8. Cross-model generalization

We applied AURORA to train LLaVA-OneVision 7B [25],
the latest model in the LLaVA family. As shown in Tab. 8,



Model CV-Bench Depth

LLaVA 1.5 13B 62.2
Fine-tuned LLaVA 60.0
AURORA (Ours) 64.8

Table 7. Performance comparison on the CV-Bench Depth sub-
task, highlighting our model’s generalization ability.

the results align with those observed for LLaVA 1.5, high-
lighting the robustness of our approach across different
model variants.
Model BLINK

2 Pts
BLINK
3 Pts

BLINK
4 Pts

BLINK
5 Pts

Average

OneVision 7B 66.9 43.5 43.5 38.7 48.1
Fine-tuned OneVision 7B 76.6 59.6 58.1 54.1 62.1
OneVision 7B + AURORA 75.8 62.1 62.1 55.6 63.9

Table 8. Training LLaVA-OneVision with Aurora.

9. Implementation details

Computation resources. We train Aurora models on
single-node machines equipped with 8 A40 GPUs. Each
training run completes in less than 10 hours.

Model architecture and token expansion. Our approach
builds on the LLaVA 1.5 13B model [28], a pre-trained mul-
timodal language model. To support depth-related tasks, we
expand the tokenizer by introducing 130 tokens for depth
maps and 336 tokens for bounding box coordinates, increas-
ing the vocabulary size beyond the original 32,000 tokens.
These additions require modifications to the token embed-
ding layer (embed tokens) and the language model head
(lm head) to accommodate the new tokens.

Fine-tuning approach. We apply LoRA [16] to the lan-
guage model for efficient fine-tuning. The vision backbone
is kept frozen while the embed tokens and lm head layers
are fully trained. This strategy enables the model to inte-
grate depth and bounding box information without over-
writing its pre-trained knowledge.

We fine-tune the model for 10 epochs, using the same
LoRA parameters and learning rates as LLaVA. Fine-
tunning follows a cross-entropy loss for next-token predic-
tion, treating the new tokens identically to the original vo-
cabulary.

Inference and decoding. During inference, we use a tem-
perature of 0 for deterministic generation and employ con-
strained decoding techniques [3, 7, 12, 43]. For depth map
generation, the model outputs exactly 100 depth tokens be-
tween DEPTH START and DEPTH END, ensuring consis-
tent and structured results.

Curriculum learning for reasoning. To enhance the
model’s reasoning capabilities, we employ progressive
chain-of-thought (CoT) for curriculum learning. Fine-
tuning starts with atomic tasks, such as depth map and
bounding box predictions, and gradually incorporates
multi-tasking data, including CoT reasoning and direct la-
beling tasks. For instance, in the depth-related task, we
use 20,000 samples for depth generation and 1,000 multi-
tasking samples (comprising 500 unique images with se-
quential CoT and direct labeling questions).

In the first epoch, the model is fine-tuned exclusively on
20,000 depth generation samples. Starting from the second
epoch, we introduce multi-tasking data by mixing 18,000
random depth generation samples with 2,000 multi-tasking
samples (the 1,000 multi-tasking samples repeated twice).
This ratio is progressively adjusted in subsequent epochs,
culminating in the 10th epoch, where the model is exposed
to 2,000 depth generation samples and 18,000 multi-tasking
samples. This staged approach ensures a smooth transition
from basic tasks to complex reasoning, effectively reinforc-
ing the model’s ability to handle multi-step reasoning chal-
lenges.

Fine-tuning data. As discussed in the Methods section,
each task is supported by three sub-datasets. For the depth
task, these include (1) depth generation data, (2) Chain-of-
Thought (CoT) reasoning data, and (3) direct labeling data.
Similarly, for the counting task, the sub-datasets consist of
(1) bounding box prediction data, (2) CoT reasoning data,
and (3) direct labeling data.

Fig. 6 and Fig. 7 present representative samples from
each sub-dataset for the depth and counting tasks, respec-
tively.



Figure 6. Examples of sub-datasets for the depth task: (1) depth generation, (2) Chain-of-Thought reasoning, and (3) direct labeling.



Figure 7. Examples of sub-datasets for the counting task: (1) bounding box prediction, (2) Chain-of-Thought reasoning, and (3) direct
labeling.
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