
A. Computational Details

Efficiency. CountGen takes ˜36 seconds on average to
generate an image on a single A100 80GB. We arrive at
this number by iterating over CoCoCount. To put in con-
text, Bounded-Attention takes ˜55 seconds and requires
bounding boxes as input, while our solution is not input-
dependent. SDXL, as well as the ”Repeated Object” base-
line, takes ˜8 seconds. Fig. 7 contains runtime comparison
with other baselines.

Compute. All experiments were conducted over a period
of a week on a single A100 80GB.
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Figure 7. Runtime comparison. Accuracy as a function of run-
time comparison across the baselines: SDXL, DALLE-3, Token-
Optimization, RPG, BoundedAttn (Random mask+Bounded At-
tention), ReasonLayout (Reason out your layout), CountGuidance
(Counting Guidance).

B. Implementation Details & Reproducibility

B.1. Count Number Extraction

To accurately extract count numbers from the textual
prompts, we employ spaCy’s dependency graph parser [15]
to identify and isolate indices of related subjects and nu-
meric modifiers. This methodology is inspired by the ap-
proach detailed in ”Linguistic Binding in Diffusion Mod-
els” by [27], which demonstrates the automated extraction
of subjects and their attribute modifiers. We have adapted
this technique to specifically recognize numeric modifiers,
both spelled out (e.g., ”five dogs”) and in numeral form
(e.g., ”5 dogs”). This adaptation ensures that each nu-
meric modifier is correctly associated with its correspond-
ing noun, thereby facilitating accurate cross attention in our
model’s processing pipeline.

B.2. CountGen
Layout guided generation. In our implementation, the
self-attention masking is applied at timesteps t ∈
[1000, 900], in the decoder layers of the U-Net. The object
layout loss is applied at timesteps t ∈ [1000, 500], in all lay-
ers of the U-Net. Our pipeline used the Attend-and-Excite
[6] code base as a starting point.

ReLayout. The ReLayout U-Net was built upon the U-
Net implementation of [5]. We trained the U-Net with a
learning-rate of 8e-6, a batch-size of size 32 and the Adam
optimizer. The intersection penalty is set to 0.25 and the
Dice penalty is set to 1. During training we apply a horizon-
tal flip augmentation across all masks, and shuffle augmen-
tation where we randomly re-arrange the input channels.

Instance identification. In the DBSCAN clustering al-
gorithm, we used a dynamic epsilon value in the range of
[0.1, 0.2] and used cosine similarity as the distance metric.
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Figure 8. Limitations. Failure modes of CountGen.

B.3. Compared Methods
Each prompt in CoCoCount and T2I-CompBench-Count
was assigned a unique random seed and was used by all
baselines and CountGen.

We compared CountGen with the following baselines:
SDXL [25]. We used the stable-diffusion-xl-base-1.0

model.
Repeated Object. In this baseline, we used the same

model and seeds as in SDXL but modified the prompts. We
repeated the object in the prompt as many times as the target
count. For example, “a photo of three cats” was changed to
“a photo of a cat and a cat and a cat”.

Reason Out Your Layout [7]. This baseline has two
main steps. First, it leverages GPT-3.5-turbo to gener-
ate spatially reasonable coordinates to be used as a bound-



ing box for each instance of an object (i.e., “a photo of three
cats” results in three bounding boxes, one for each cat).
Second, it uses the generated layout to guide the genera-
tion process. We followed the prompt used by the authors,
however, it seems that the responses by GPT-3.5-turbo
and the author’s parser are not completely cohesive, which
at times leads to zero bounding boxes. We count such cases
as failures. For the CoCoCount experiment, it successfully
generated 134/200 images, and for T2I-CompBench-Count,
just 89/200. Failures were counted as errors in the reported
results. We did not need to make changes to the code to run
it.

DALL-E 3 [3]. We used the OpenAI API interface for
the DALL-E 3 model with “standard” image quality. We
did not use seeds in this baseline.

Random masks + BoundedAttn [8]. Given a prompt
with a required number of object instances, we create a cor-
responding layout with the correct number of objects ran-
domly placed in the image plane in a way they do not in-
tersect one another. Then we used Bounded Attention to
generate an image condinitioned on that layout.

Counting Guidance [17]. The authors provided us with
their code. We did not need to change it to run our experi-
ments.

RPG [38]. We used the official code, with SDXL and
GPT-4 for our experiments.

Token Optimization [40]. We used the official code,
with SDXL-turbo.
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Figure 9. A training set for a ReLayout. We created pairs of
images using SDXL, using the same seed and prompts that only
differ by object count. We filtered out images that did not conform
to the prompt, using the techniques described in Sec. 3.1. The
resulting image pairs preserve the scene and layout except adding
one object.

C. Extended Details on CountGen

C.1. ReLayout: Matching Objects
We aim to understand how M i

k transitions to M i
k+1. Specif-

ically, for each object i ∈ 1, . . . , k in the original Mk lay-
out, our ReLayout objective is designed to predict how the
corresponding mask M i

k changes in the new image M i
k+1,

and additionally where to insert the added object k+1. This

design encourages the model to slightly modify existing ob-
jects while preserving spatial and shape consistency across
the images.

To this end, we first have to establish a correspondence
between the object masks (Mk,Mk+1). We employ the
Hungarian algorithm to find the optimal one-to-one match-
ing between masks in the two images based on the overlap
and similarity of the masks. This algorithm effectively pairs
each object in Mk with a corresponding object in Mk+1.
The object in Mk+1 that remains unmatched represents the
additional object introduced in the new image, providing a
clear identifier for the increment in object count.

C.2. Losses for Training the ReLayout
We use two training losses:

Dice Loss: measures the overlap between the predicted
mask and target mask across all channels containing ob-
jects:

Li
Dice = 1−

2
∑

p∈P M i
k+1(p) ·M∗i

k+1(p)∑
p∈P (M

i
k+1(p) +M∗i

k+1(p))
(2)

Here, p iterates over all pixels P in the masks, and i ranges
over all possible object channels. For all k+1 channels, the
total dice loss is:

LDice =

k+1∑
i=1

Li
Dice (3)

Intersection Loss: To ensure distinctiveness among the
predicted masks and to minimize overlap between differ-
ent object masks, the intersection loss for all possible pairs
of different masks in the output mask containing objects is
given by:

LOverlap =
k+1∑
i=1

k+1∑
j ̸=i

2
∑

p∈P M i
k+1(p) ·M

j
k+1(p)∑

p∈P (M
i
k+1(p) +M j

k+1(p))
(4)

C.3. ReLayout Evaluation
We use two metrics for the evaluation:

Extra mask median score. To calculate the extra mask
size score, we first find the median size (Smedian) of all object
masks. We then compare this to the size of the new mask
(Sextra). The score is defined as:

Score =
min(Sextra, Smedian)

max(Sextra, Smedian)

which gives a value between 0 and 1. A score closer
to 1 indicates that the new object’s size is more similar to
the median-sized object. For ReLayout, the score is 0.705,
indicating that the new object has become more similar in
size to the other objects in the scene.



Average intersection score. This metric measures the
average intersection between an object i and all other ob-
ject masks j, normalized by the size of object i. A lower
score indicates less overlap between objects. During train-
ing, this score decreased to 0.18, indicating small intersec-
tion between the objects.

C.4. CountGen Pipeline Ablation
Notably, the CountGen module consistently adds an extra
object mask in every case, suggesting that the failures on
CoCoCount are related to either clustering or layout guid-
ance (Tab. 4). Out of all the failures, 47 were due to Instance
localization and 49 were due to loss. Over-generation oc-
curred mostly for target count k bigger than 5, whereas
layout-guidance issues are more frequent with target counts
≤ 5. Among the Instance localization failures, we ob-
served that 31% of the errors occurred when more than 15
instances were generated in the original image.

Table 4. Failure analysis across different target counts.

Target Count Localization Failures Loss Failures Total Failures

2 2 3 5
3 4 10 14
4 5 9 14
5 8 7 15
7 11 8 19
10 17 12 29

C.5. Instance-identity Representation Analysis
As detailed in Sec. 6, our approach to identifying an
instance-level feature layer involves comparing the bound-
ing box predictions generated from our model’s instance lo-
calization masks with ground truth bounding boxes. Essen-
tially, we aim to identify the layer whose features, when
clustered, yield a distinct cluster for each subject instance.
To achieve this, we manually annotated a dataset of 85 im-
ages with bounding boxes for each instance in the gener-
ated images. Then, using standard precision and recall met-
rics, we select the layer with the highest combined score by
comparing the bounding boxes of each cluster to the ground
truth bounding boxes. The algorithm for finding the optimal
layer is presented in Algorithm 1. We report standard pre-
cision and recall metrics across a range of timesteps (Tab.
5) and layers (Tab. 6). The selected timestep and layer, de-
termined using set-aside validation data, generalize well to
the test set and outperform other hyperparameter configura-
tions.

The provided algorithm is general and can be easily ex-
tended to other models and architectures. Furthermore, it-
erating over a set of potential feature sources eliminates the
need for manual hyperparameter tuning, thereby automat-
ing the entire adaptation process. To further evaluate the

generalization and robustness of our method, we identify
instance-level features in the Flux.1-dev model, as detailed
in Section D.2.

Algorithm 1 Finding Instance Features
Input:
• K: Number of images
• Rϵ: DBSCAN’s range of possible ϵ values
Output:
• Optimal layer l∗ and timestep t∗ maximizing the average

F1 score
1: Generate K images.
2: Label bounding boxes GT for instances in each image.
3: for each image k, layer l, and timestep t do
4: Extract self-attention features SA from layer l at

timestep t.
5: C ← DBSCAN(SAt,l, Rϵ) {Cluster features using

DBSCAN}
6: B ← BBOX(C) {Extract bounding boxes from clus-

ters}
7: F1score ← F1(B,GT ) {Calculate F1 score}
8: Store F1kt,l.
9: end for

10: Compute the average F1 score across all K images for
each l and t:

F1t,l =
1

K

K∑
k=1

F1kt,l

11: Identify the layer l∗ and timestep t∗ that maximize the
average F1 score:

(l∗, t∗) = argmax
l,t

F1t,l

C.6. Stress Test with High Object Count

To assess how quality degrades with count, we analyze two
key quality aspects under varying object counts up to 20.
Metrics are based on new manual annotations. Fig. 10
shows that both metrics gradually decline. Also, we found
that only 7.4% of image captions have counts above 10, by
analyzing 3M relevant prompts in Laion-5B [29].
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Figure 10. Stress test of CountGen with high object counts.



Table 5. Precision and Recall across different timesteps.

Metric t=900 t=800 t=600 t=500 (Ours) t=400 t=200 t=0

Precision 0.81 0.88 0.88 0.92 0.90 0.90 0.83
Recall 0.51 0.79 0.84 0.92 0.93 0.93 0.89

Table 6. Precision and Recall across different layers.

Metric down 10 down 40 mid 120 mid 136 up 48 up 52 (Ours) up 70 up 100

Precision 0.27 0.27 0.26 0.39 0.39 0.92 0.67 0.45
Recall 0.56 0.56 0.10 0.16 0.15 0.92 0.67 0.35

C.7. Qualitative Metrics
We computed the CLIP score and KID (more suitable for
smaller sets) to assess image quality and semantic align-
ment across both datasets. Tab. 7 shows CountGen outper-
forms or is on-par with all baselines.

Metric CLIP ↑ 100×KID ↓
CountGen (ours) 0.31 0.06
SDXL 0.31 -
DALLE 0.30 0.75
Bounded 0.30 0.76
Reason Layout 0.30 0.56
Prompt editing 0.30 0.12
Token optimization 0.30 1.20
Counting guidance 0.30 0.48
RPG 0.29 0.44

Table 7. CLIP & KID metrics comparison across different models.

C.8. Semantic and Spatial Metrics
To ensure that CountGen does not negatively affect other
semantic and spatial aspects such as color fidelity and spa-
tial arrangement, we generated 100 prompts using GPT-4,
each designed to test various spatial alignments and seman-
tic attributes, such as color variations and different scene
compositions. For instance, we generated prompts like ”A
photo of five bears each digging into a different trash can”
and ”A photo of six cats each sitting on a different step
on a staircase” (Fig. 23). We then used CountGen and
SDXL to generate images from these prompts. To evalu-
ate semantic alignment, we conducted a human evaluation
and ask whether the images captured the spatial or seman-
tic attributes described in the prompts. The results show
62%± 0.05 accuracy for CountGen, and 63%± 0.05 accu-
racy for SDXL indicating that CountGen performs compa-
rably to SDXL, with no negative impact.

C.9. Comparison with Others Layout-to-Image
Methods

We compare our method to InstanceDiff [36] and MIGC
[42], with both performing worse than ours:
• MIGC: Random + MIGC scored 34% on CompBench

and 39% on CocoCount, while CountGen Layout +
MIGC improved to 42.5% and 43%.

• InstanceDiff: Random + InstanceDiff scored 44% on
CompBench and 48% on CocoCount, while CountGen
Layout + InstanceDiff reached 46.98% and 49%.
Both methods tend to produce unnatural images and rely

on CountGen for layout generation.
We conducted two separate comparisons for human eval-

uation as describe in Fig. 18. In the comparison involv-
ing MIGC, the raters preferred MIGC to CountGen in only
20 out of 200 cases, while they preferred CountGen in 95
cases. Similarly, compared to InstanceDiff, the raters pre-
ferred InstanceDiff in just 16 cases and CountGen in 82
cases.

C.10. Evaluation Extension
To further verify the robustness of our method, we expand
the CoCoCount dataset to include 500 images and conduct
a human evaluation. The results show a 53% accuracy rate,
confirming that our method remains robust.

D. Future Work
D.1. Generate Objects of Mixed Classes
Although it is beyond our primary scope, we demon-
strate CountGen can handle counting objects from differ-
ent classes with a simple modifications to the architecture
(Fig. 11). Specifically, we extract the cross-attention for
each object type and cluster the self-attention features ac-
cordingly. Then, we fix the layout of each object separately
using the same pre-trained ReLayout module. Finally, we
apply the Lcross loss for both objects simultaneously.
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Figure 11. Objects from mixed classes

D.2. Generalization of Instance Representation to
Other Diffusion Models Architectures

we extended our Algorithm 1 to Flux.1-dev model. Specif-
ically, we generated 30 new images using the Flux model
and manually annotated them with bounding boxes for each
instance. This prepared dataset then underwent analysis
using Algorithm 1. We report precision and recall met-
rics across different layers in Tab. 9 and across different
timestemps in Tab. 8. Notably, layer 27 demonstrated the
highest F1 score, indicating robust instance recognition ca-
pabilities. The effectiveness of instance separation at layer
27 is demonstrated in Fig. 21. The PCA visualization con-
firms the distinct separations between the object instances.

E. Datasets
CoCoCount. To create this set, we first select at random
20 classes from MSCOCO [21]. We then sample from six
counting categories: 2,3,4,5,7, and 10. The two and three
categories contain 34 samples, while the rest contain 33.
Our prompts consist of the pattern “a photo of {number}
{object}” with an optional variation of scenes: “on the
grass”, “on the road”, or “on the ground”, which we incor-
porate for 50% of the prompts, also randomly. In total, we
have 200 prompts. Below are the complete lists from which
elements were chosen:

Objects: ’car’, ’airplane’, ’bird’, ’cat’, ’dog’, ’horse’,
’sheep’, ’cow’, ’elephant’, ’bear’, ’backpack’, ’tie’, ’sports
ball’, ’baseball glove’, ’cup’, ’bowl’, ’apple’, ’donut’, ’cell
phone’, ’clock’. Counting Categories: ’two’, ’three’,
’four’, ’five’, ’seven’, ’ten’. Scenes: ’on the grass’, ’on
the road’, ’on the ground’.

F. Evaluation
Automatic evaluation. We use the implementation by
Ultralytics YOLO of YOLOv9e (large).

F.1. Human Evaluation
We use the Amazon Mechanical Turk platform and ensure
the evaluation is of high quality by hiring raters with a min-
imum of 5,000 approved HITs and an approval rate exceed-
ing 98%. Each example was shown to three raters and the

majority selection was taken. The compensation was $15
per hour. Screenshots of the count precision task can be
viewed in Fig. 16, Fig. 17, Fig. 18 and the image fidelity
task in Fig. 19.

Layout w/o Loss Ours
w/o SA 

Masking

Figure 15. Component ablation. We ablate over two components
of the layout-guided generation model: the optimization loss and
Self-Attention Masking. Disabling the loss causes the generated
image to deviate from the required layout. Removing the Self-
Attention masking typically causes objects to appear outside of the
layout foreground.

https://github.com/ultralytics/ultralytics


Table 8. Precision and Recall across different timesteps in Flux.

Metric t=900 t=800 t=600 t=500 (Ours) t=400 t=200

Precision 0.38 0.64 0.78 0.74 0.53 0.47
Recall 0.27 0.57 0.74 0.81 0.68 0.72

Table 9. Precision and Recall across different layers in Flux.

Metric layer 11 layer 19 layer 23 layer 25 layer 27 (Ours) layer 37 layer 46

Precision 0.27 0.07 0.45 0.62 0.74 0.34 0.33
Recall 0.28 0.07 0.49 0.51 0.81 0.37 0.40
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Figure 12. Accuracy, as a function of the number of gen-
erated objects. Accuracy evaluated by human raters, over the
set of 200 evaluation images. CountGen (blue) outperforms all
methods for n > 3, and is on par with DALL-E 3 for 2 and 3
objects.
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Figure 13. Accuracy, as a function of the number of gen-
erated objects. Accuracy evaluated by YOLOv9, over the set
of 200 evaluation images. Here, CountGen (blue) outperforms
all methods.

t900

t500

t700

t100t300

t800 t900 t700t800

t500 t100t300

Figure 14. PCA visualization across timesteps. To explore the notion of objectness inside SDXL latent space, we visualize a dimension-
reduced self-attention feature maps across different timesteps range from t = 900 to t = 100. Initially, up to timestep t = 500, clear
separation is not observed in some objects (e.g., some eggs appear in similar colors). However, starting from t = 500, a distinct separation
emerges, with each object clearly distinguished by different shades.



Figure 16. Instructions for the Image Evaluation Task - Part 1.

Figure 17. Instructions for the Image Evaluation Task - Part 2.

Figure 18. Example task to count the number of objects and assess their well-formedness.



Figure 19. Example task to compare image fidelity based on prompt matching and naturalness.
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Figure 20. Confusion matrix from human evaluation of the count accuracy experiment for CountGen. As noted in Fig. 18, evaluators could
indicate if they were unsure of their response (”N/A” in the table).



Figure 21. PCA visualizations of the Flux model. Using our algorithm (1), we identified the layer in the Flux model that captures
objectness. Layer 27 exhibits a strong ability to separate different instances, with each instance uniquely represented by a distinct color in
the PCA visualizations.
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Figure 22. Additional comparison between CountGen and SDXL with varied sentence structures.



“A photo of five bears each digging 
into a different trash can.”
Ours SDXL

“A photo of four backpacks each 
containing different school supplies.”

Ours SDXL

“A photo of six cats each sitting on a 
different step on a staircase.”
Ours SDXL

“A photo of six birds each of a 
different species on a fence.”
Ours SDXL

Figure 23. Spatial and semantic comparisons between CountGen and SDXL.
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Figure 24. Qualitative comparisons. Additional results of CountGen versus SDXL, Counting Guidance, RPG, and Token Optimization are
shown.


