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1. Additional quantitative and qualitative
results

In this section we show additional quantitative device-
pairs cross-localization results on each of the locations
independently (Supplementary Section 1.1), as well as
the best performing visual localization configuration
showing the device queries plotted in the four available
maps (Supplementary Section 1.2).

1.1. Confusion matrices

To benchmark visual localization on CroCoDL, we eval-
uated the configurations on each location independently,
obtaining the following confusion matrices.

For all the matrices the percentages of correct pose
estimation queries with rotation-translation thresholds
is 5 degrees and 0.5 meters respectively. The axis of the
matrices refer to HoloLens 2 as HL, and to the NavVis
ground-truth scanner as NV.
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Supp. Figure 1. NetVLAD— SuperPoint— LightGlue.

Device-pairs cross-localization results in the five examined
locations. Percentage of correct pose estimation queries
with rotation-translation thresholds of 5 degrees, 0.5 meters
respectively.
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Supp. Figure 2. APGeM-—SuperPoint—LightGlue.
Device-pairs cross-localization results in the five examined
locations.
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Supp. Figure 3. Overlap—SuperPoint—LightGlue.
Device-pairs cross-localization results in the five examined lo-
cations. Since overlap-based image retrieval uses the ground-
truth mesh, this focuses instead on feature extraction and
matching.



1.2. Pose estimation plots

This supplementary section contains 3D visualizations
of mapping trajectories, ground truth (GT) query
set poses, and query set estimated poses using the
NetVLAD - SuperPoint - LightGlue visual localization
configuration. We show results for two locations, the
smaller ARCHE D2 and the larger, more challenging
Succulent Plant Collection. For each location, we vi-
sualize the estimated poses of all three query devices
(i08S, HoloLens, Spot) using the four available mapping
devices (10, HoloLens, , )

This is the common legend for all the plots in this
section:
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Supp. Figure 4. Pose estimation legend.
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Supp. Figure 5. Qualitative iOS pose estimation re-
sults in ARCHE D2. Using the NetVLAD - SuperPoint -
LightGlue visual localization configuration, we visualize the
iOS queries in the four available maps.
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Supp. Figure 6. Qualitative HoloLens pose estimation
results in ARCHE D2. Using the NetVLAD - SuperPoint
- LightGlue visual localization configuration, we visualize
the HoloLens queries in the four available maps.
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Supp. Figure 7. Qualitative Spot pose estimation
results in ARCHE D2. Using the NetVLAD - SuperPoint
- LightGlue visual localization configuration, we visualize
the Spot queries in the four available maps.



iOS Map HoloLens Map

Supp. Figure 8. Qualitative iOS pose estimation re-
sults in the Succulent Plant Collection. Using the
NetVLAD - SuperPoint - LightGlue visual localization con-
figuration, we visualize the iOS queries in the four available
maps.
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Supp. Figure 9. Qualitative HoloLens pose estima-
tion results in the Succulent Plant Collection. Using
the NetVLAD - SuperPoint - LightGlue visual localization
configuration, we visualize the HoloLens queries in the four
available maps.

Supp. Figure 10. Qualitative Spot pose estimation
results in the Succulent Plant Collection. Using the
NetVLAD - SuperPoint - LightGlue visual localization con-
figuration, we visualize the Spot queries in the four available
maps.



2. Additional visualizations

In this section, we group additional visualizations of the
different locations (Supplementary Section 2.1), extra
renderings from the collected dataset (Supplementary
Section 2.2), and additional rendering alignments with
the raw images from the various devices (Supplementary
Section 2.3).

2.1. Images from the locations

Additional images of the different locations are shown
in this section.

2.1.1. Hydrology Lab

Supp. Figure 11. Additional images from the Hydrol-
ogy Lab. The left image showcases the aerial view of the
Hydrology Lab, to portray the extensions of the recorded
environment, while the right image shows the appearance
of the basement below the lab.

2.1.2. Design Museum Collection

Supp. Figure 12. Additional images from the Design
Museum Collection. The left image showcases the art
covering the walls of the recorded Design Museum location.
The right image is an archive room for posters. The Design
Museum contains a mixture of wider spaces with art, and
narrow archives with repetitive drawers on the walls.

2.1.3. Succulent Plant Collection

Supp. Figure 13. Additional images from the Succu-
lent Plant Collection. Close-ups of various succulents, as
well as one of the main hallways of the collection; this scene
is composed of narrow hallways bordered by diverse plants
indoors, and a plaza and garden outdoors.

2.2. Renderings and trajectories

This section contains point cloud renderings of the
locations, as well as estimated ground truth trajectories
inside them.

2.2.1. ARCHE D2

Supp. Figure 14. Qualitative results of the point cloud
renderings from the recordings in ARCHE D2.



Supp. Figure 18. Qualitative results showing recorded
device trajectories in the Hydrology Lab. Top-down
view of the ground floor, with an iOS trajectory.

Supp. Figure 15. Qualitative results showing recorded
device trajectories in ARCHE D2. Left: side-views of
ARCHE D2 point cloud rendering. Right: top-down view
of ARCHE D2 point cloud rendering. Device trajectories
are shown in both; Spot trajectories are significantly closer

to the ground than hand-held or head-mounted devices. 2.2.4. Succulent Plant Collection

2.2.2. ARCHE Grande Place

Supp. Figure 19. Qualitative results of the point cloud
renderings from the recordings in the Succulent
Plant Collection. Left: entrance of collection. Right:
aerial view of one of the rooms.

Supp. Figure 16. Qualitative results showing recorded
device trajectories in ARCHE Grande Place. Left:
top-down view of entire location. Right: top-down section
view of tent-covered segment of the scene with a Spot tra-
jectory traversing it.

2.2.3. Hydrology Lab

Supp. Figure 20. Qualitative results showing recorded
device trajectories in the Succulent Plant Collection.
Top-down view of plant collection with a device trajectory.
Left: subset of scene interior. Right: subset of scene exterior.

Supp. Figure 17. Qualitative results of the point cloud
renderings from the recordings in the Hydrology
Lab. Left: main floor of the lab. Right: lab basement.



2.2.5. Design Museum Collection

Supp. Figure 21. Qualitative results of the point
cloud renderings from the recordings in the Design
Museum Collection. Left: staircase with paintings and
posters. Right: archive room.

Supp. Figure 22. Qualitative results showing recorded
device trajectories in the Design Museum Collection.
All: point cloud renderings of location with multiple device
trajectories. Top: aerial and side view of entire location.
Bottom: top-down view of archive room.

2.3. Alignment with the renderings

This section provides qualitative results of the GT align-
ment process, comparing images recorded by multiple
devices (i0S, HoloLens, and Spot) to renderings from
the NavVis mesh at the GT trajectory pose. This high-
lights the variety of the recorded dataset and the quality
of the GT trajectory.

2.3.1. Hydrology Lab

i0S ; HoloLgns

Supp. Figure 23. Qualitative results of the render-
ings vs the raw images recorded in the Hydrology
Lab. The images show the very good alignment between
the rendered images and the recorded images by the differ-
ent devices: iOS, HoloLens, and Spot. This is needed for
accurate GT to evaluate against.

2.3.2. Succulent Plant Collection

Supp. Figure 24. Qualitative results of the renderings
vs the raw images recorded in the Succulent Plant
Collection. The images show the very good alignment
between the rendered images and the recorded images by
the different devices: iOS, HoloLens, and Spot. This is
needed for accurate GT to evaluate against.



CroCoDL

l_ o] 0 010 521 1 Name of the location
sessions

<timestampl> ...t e Session containing a NavVis scan

<timestamp2>

<timestamp3>

<timestampl>+<timestamp2>+<timestamp3> ......... Merged NavVis scans used for pseudo-GT

BOS_MAP t vttt e e Session containing the iOS map set

l_trajectories ERE GT aligned trajectory for the map

OS_QUETY ittt Session containing the iOS query set
proc
l_aligned_trajectories.txt ....................... GT aligned trajectory for the queries
(o PSS =T v v Queries for pose estimation

T =T Individual recordings in Capture format

hl_map

hl_query

hl_x

spot_map

spot_query

spot_x*

Supp. Figure 25. Data structure. We present the folder structure for the data of one location above.

2.3.3. Design Museum Collection

HoloLens

Supp. Figure 26. Qualitative results of the renderings
vs the raw images recorded in the Design Museum.
The images show the very good alignment between the
rendered images and the recorded images by the different
devices: i0OS, HoloLens, and Spot. This is needed for accu-
rate GT to evaluate against.

3. Data structure

The data structure is provided in Figure 25.


https://github.com/microsoft/lamar-benchmark/blob/main/CAPTURE.md

4. Drone data processing and alignment

For the acquisition of drone data a DJI Mini 4 Pro
is used, providing monocular video with a resolution
of 3840 x 2160 pixel at 30Hz. Additionally, per-frame
synchronized GNSS (longitude, latitude) and metric
altitude readings can be accessed. Note that the drone
does not provide IMU measurements or odometry. Sim-
ilar to the Spot data, drone data preprocessing is not
implemented in the LaMAR pipeline and a separate
data pipeline is therefore used to convert raw drone
footage. To this end, we first calibrate the camera in-
trinsics using Kalibr [3] and then compute a scaleless
trajectory using monocular Deep-Patch Visual Odome-
try [6]. This trajectory is then scaled to roughly metric
scale as described below and then transformed into the
capture format expected by the LaMAR [5] pipeline.

Outdoor Environments. For outdoor environments
like ARCHE Grande, GNSS data is used to resolve the
problems of scale-ambiguity, scale drift and pose drift
of the monocular VO trajectory. We first transform
the GNSS’ longitude and latitude coordinates into the
metric projected coordinate system for Switzerland and
combine them with the altitude readings to generate
a metric trajectory. We then find the transformation
between odometry in camera coordinate system and
the metric trajectory by scaling and aligning the first
N frames of the trajectory using Procrustes analysis.
We transform the metric trajectory into the iOS co-
ordinate system and substitute the translational part
of the odometry with it, thus scaling and eliminating
drift from the trajectory, while keeping VO orientations.
It is important to note that while this approach intro-
duces local coarseness in the trajectory, it ensures global
consistency. Further refinement of the trajectory is sub-
sequently carried out through bundle adjustment and
pose-graph optimization during the LaMAR alignment
process.

Indoor Environments. In indoor environments with-
out GPS reception, such as HYDRO, we are limited
to using only metric altitude readings to scale the VO
trajectory. However, this approach has two main lim-
itations. Firstly, in long trajectories with inevitable
drift, global consistency cannot be guaranteed. Sec-
ondly, altitude measurements are provided in 0.1-meter
increments which introduces scale inaccuracies. To ad-
dress the first issue, we restrict ourselves to trajectories
that exhibit only negligible drift. For instance, trajec-
tories containing degenerate motions, such as fast or
pure rotations, are split up at such motions, mitigating
their impact. To handle scale inaccuracies, we compute
the median scale of the trajectory, averaging out errors.
Additionally, we only include trajectories that demon-

Table 1. Drone-on-X localization results. We report
recall at 5deg, 0.5m and 10deg, 1m for drone-on-X localiza-
tion using NetVLAD-SuperPoint-Light Glue.

Drone-on-X ‘ HL i0S Spot NV

ARCHE D2 | 72.8%/78.9% 76.2%/80.3% N/A 85.0%,/87.8%
ARCHE Grande | 73.5%/77.7% 82.7%/84.6% 19.8%/35.2% 74.7%/83.3%

: ‘il_
Supp. Figure 27. Qualitative results fon ARCHE D2

data from the Drone aligned with the GT from the
NavVis scanner.

strate measurable changes in altitude, ensuring reliable
scaling information.

Results. We show some initial results of the align-
ment in Figure 27. We also report some results for
drone-on-X localization using NetVLAD [1] image re-
trieval coupled with SuperPoint [2] feature extraction
and LightGlue [4] matcher in Table 1. These results
support the take-home messages from the main paper.
The drone performs best in iOS and NavVis maps due
to the similarities in camera (rolling shutter, RGB) and
viewpoint. Second best is the location in HL maps
which do share a similar viewpoint, but the sensors
are different. Finally, the localization in Spot maps is
very poor due to very limited viewpoint overlap. In the
ARCHE D2 location, due to movement restrictions and
sensor setups for Spot and Drone, we were so far unable
to get data with significant visual overlap.
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