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A. Technical details
A.1. Estimation of the statistical parameters
In this section, we provide additional information regarding the
estimation of the statistical parameters of the Gaussian distribu-
tion (see Sec. 4.1). These parameters are estimated by maximum
likelihood:
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where Ŝj in Rp×p is the sample covariance matrix. Given that Ŝj

usually suffers from a large variance due to small sample statistics
(i.e., p ≥ T ≃ 70), we use a shrinkage estimator leading to the
final covariance estimator Ĉj :

Ĉj = (1− ρ̂j) Ŝj + ρ̂j D̂j , (23)

where D̂j in Rp×p is the low-variance/high-bias diagonal matrix
formed with diagonal elements of Ŝj , and ρ̂j in [0, 1]. Hyper-
parameter ρ̂j can be estimated optimally in a data-driven fashion
by risk minimization between the true (unknown) covariance Cj

and its shrunk counterpart Ĉj . This leads to the closed-form ex-
pression [29]:
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where ◦ stands for Hadamard (element-wise) product.

A.2. Dense detection map computation details
In this section, we provide additional details on the computation of
the dense detection map introduced in Sec. 4.1. To obtain a full-
frame detection map, α̂ and σ̂α must be computed for all spatial
coordinates, which can be formalized by:

∀xi ∈ Gp, α̂i = argmax
αi

ℓ(αi,xi) . (25)

Note that it corresponds to solve independent optimization prob-
lems at each location i. To efficiently solve Eq. (25), we employ a
fast approximation to compute the terms a(xt) and bt(xt) at each
time step and for every initial position. First, the terms at and bt
are computed for all positions in the grid Gp of spatial pixels. In the
following, we note bti = bt(xi), ai = a(xi) and hji = h(j)(xi)
for all xi in Gp, such that:
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With our convolutional approach, these terms can be computed ef-
ficiently by Cholesky factorization of the precision matrix, as de-
tailed in Sec. A.3. Let bt in RH×W and a in RH×W represent the

resulting quantities. Then, bt(xt) and a(xt) can be approximated
by spatial interpolation of bt and a. However, the trajectories of
all exoplanets in the observation are governed by a common par-
allactic rotation vector ϕ in RT . So in practice, this interpolation
can be computed efficiently for each time-step t, by rotating the
frames a and bt by an angle −ϕt. Thus, a dense detection map γ̂
in RH×W can be obtained with:
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=
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, (28)

where R−ϕt : RH×W → RH×W is the frame rotation operator
with angle −ϕt, and α̂, σ̂ in RH×W such that:
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. (29)

A.3. Fast computation of bt and a

In this section, we detail an efficient strategy to derive a dense two-
dimensional detection map γ̂ serving as the final quantity to detect
exoplanets, see Sec. 4.1.

The terms bt and a in RH×W involved in γ̂ (see Eqs. (26)–
(28)) can be computed efficiently through:
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where Qj is the linear operator that places the patch indexed by j

in the correct position in the image, and b
(j)
t , a(j) are in Rp. The

individual terms a(j) and b
(j)
t are given by:
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)
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where P in Rp×p is a circulant matrix, with each column rep-
resenting the flattened PSF centered on a different pixel. Equa-
tion (32) can be implemented efficiently with a convolution oper-
ation. Implementing Eq. (33) directly is however computationally
challenging as it requires storing the matrix P, which is highly in-
efficient, especially for large patches. To circumvent this issue, we
propose to decompose a(j) as:

a(j) = N(L̂jP) , (34)

where N : Rp×p → Rp is the operator that computes the column-
wise squared ℓ2–norm, and the matrix L̂j in Rp×p is the lower
triangular matrix obtained via Cholesky decomposition of the pre-
cision matrix (i.e., Ĉ−1

j = L̂jL̂
⊤
j ). The formulation of Eq. (34)

allows implementing the matrix multiplication with P efficiently
as a convolution operation.
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Algorithm 1 Iterative procedure for flux and position esti-
mation.
Require: y ∈ RT×H×W , z ∈ R3

for l = 0 · · ·L− 1 do
α,x0 ← z
for t = 0 · · ·T − 1 do ▷ Update nuisance estimate

xt ← r(x0, ϕt)
st ← yt − h(xt)

end for
g,H← 0R3 ,0R3×3

for t = 0 · · ·T − 1 do ▷ Gradient and Hessian
for j ∈ S(xt) do

m̂j , Ĉj ← Estim({s(j)t }t) ▷ Eqs. (23)–(24)
g ← g + wj

∂ℓj
∂z (z, m̂j , Ĉj)

H← H+ wj
∂2ℓj
∂z2 (z, m̂j , Ĉj)

end for
end for
z ← ProjZ(z −H−1g) ▷ Projection on feasible set

end for
return z

A.4. Iterative optimization scheme for astrometry
We detail in this section the characterization procedure men-
tioned in Sec. 4.1 for precisely estimating the flux α and the two-
dimensional sub-pixel position x0 of an exoplanet. This proce-
dure is described by Algorithm 1 in pseudo-code form, where
z = [α,x0] in R3 is the variable to be refined. The position is
initialized to the coordinates of the pixel with the highest detec-
tion score from the detection step, while the flux is initialized us-
ing the value extracted from the flux map α at that location. We
decompose the involved loss function ℓ as:
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such that C−1
j = LjL

⊤
j . We also define the feasible set Z such

that α > 0 (enforcing a non-negativity constraint on the exoplanet
flux) and the estimated position remains within a fixed radius of
the initial estimate. We denote by ProjZ the projection associated
with it. In Algorithm 1, we also denote by Estim(.) the procedure
described in Eqs. (23)–(24) to estimate the statistical parameters
of the nuisance component.

A.5. Prior information on the exoplanet spectrum
The channel-wise detection maps γ̃c = b̃c/

√
ãc are combined

into a single detection map by averaging ãc and b̃c with weights
ec in R+ satisfying

∑
c ec = 1 such that:

ãC =
∑
c

ec ãc and b̃C =
∑
c

ec b̃c . (37)

Figure F. Calibrated PFA versus test PFA: the calibration proce-
dure allows obtaining a reliable approximation of the PFA, except
in the extreme low-PFA regime (high detection score under H0)
where samples are exceedingly rare.

The final detection score, spectrally combined over C channels, is
γ̃C = b̃C/

√
ãC in RH×W . The weights ec reflect prior assump-

tions about the exoplanet spectrum, and can be used (if available)
to boost the detection of exoplanets having similar spectrum, see
e.g., [12, 26]. For all experiments and baselines, we assumed a
non-informative flat prior (i.e., ec = 1/C). If additional informa-
tion about the exoplanet’s spectrum is available, the prior can be
adjusted accordingly.

A.6. Calibration procedure
This section outlines the calibration procedure for the full model
described in Sec. 4.3, following the approach proposed in [5],
which we briefly summarize here.

We aim to calibrate the predicted probability of false alarm
(PFA), a critical metric for astronomers to quantify detection un-
certainty. This requires characterizing the output distribution of
our method under the null hypothesis H0 (i.e., when no source
is present), which we denote γ̃|H0. For that purpose, we use a
calibration dataset Dcalib, consisting of 15 observations excluded
from training, validation, and testing. Temporal shuffling of the
frames and parallactic rotation reversal are applied to augment the
dataset and ensure no real source is present. These custom data-
augmentations disrupt the temporal coherence of any (potentially
unknown) real exoplanets, preventing them from biasing the train-
ing and calibration processes. We apply the model to 10,000 cubes
from Dcalib, concatenate all output pixels into a single vector γ̃calib
of length ncalib, and compute the empirical cumulative distribution
function (eCDF):

∀ τ ∈ R, F̂γ̃|H0
(τ) :=

1

ncalib

ncalib−1∑
i=0

1γ̃calib,i≤τ . (38)

where 1 is the indicator function. The estimated probability of
false alarm is related to the eCDF through:

∀ τ ∈ R, P̂FA(τ) = P̂(γ̃ > τ |H0) = 1− F̂γ̃|H0
(τ) . (39)
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Figure G. Additional details on the F150 dataset

In Fig. F, we evaluate the PFA across a range of detection thresh-
olds using the calibration set and apply the same thresholds to
the test set for comparison. The results show that the calibrated
PFA closely matches the test PFA, except in the extremely low-
PFA regime. This slight discrepancy is expected, as high detec-
tion scores under H0 are exceedingly rare, leading to increased
noise in PFA estimation. In this regime, our estimate is neverthe-
less conservative, i.e., the experienced PFA is slightly smaller than
predicted one.

A.7. Implementation details

Our model implementation and training are based on the PyTorch
framework. We optimize the neural network weights using the
Adam optimizer with a learning rate of 5 × 10−4, a batch size of
16, and 50,000 iterations. We apply data augmentation techniques,
including random 90◦ rotations, vertical/horizontal flipping, and
frame shuffling. Bicubic interpolation is used for spectral and ex-
oplanet alignment. For ADI, the model is trained on 64 frames,
while for ASDI, data cubes have 32 frames with two channels
each. All evaluations and tests are done with 64 frames in both
ADI and ASDI. To ensure accurate results, pixels containing real
known exoplanets are masked out during training before the tem-
poral summation in Eq. (29). The loss is calculated on the final
output for pixels with at least 8 valid frames, unaffected by real
exoplanets.

B. Dataset description

SHINE-F150 is a subset of the SPHERE large survey, with 322
data cubes (20, 462 images in total) from 150 stars. The spa-
tial resolution is 12 milliarcseconds/pixel. The spectral resolu-
tion λ/∆λ is 20. Detailed description is in [39]. We followed
[5] to exclude corrupted data, leaving 220 datasets, with 165 used
for training. The main statistics of the F150 dataset are shown in
Fig. G.

C. Comparison of state-of-the-art methods

Method nuisance model P1 P2 P3 P4 P5 P6 P7

PACO statistical on data patches X ✓ ✓ ✓ X ✓ ✓
SODINN learned on PCA residuals X X X ✓✓ X X X

deep PACO learned after PACO whitening X X ✓ ✓✓ X ✓ X
Super-RDI PCA ✓ ✓ X ✓✓ X X ✓

MWIN5-RB learned on PCA residuals ✓ ✓ X ✓✓ ✓ X ✓✓
ConStruct generative, learned on data ✓ ✓ X ✓✓ ✓ X ✓✓✓

MODEL&CO statistical on learned features ✓ X X ✓✓✓ ✓✓ X ✓✓✓
proposed multi-scale stat. on learned features ✓ ✓ ✓ ✓✓✓ ✓✓✓ ✓ ✓✓✓

Table D. Comparison of advanced exoplanet imaging algorithms
based on key desirable properties. P1=observation-independence
of the model, P2=physical interpretability, P3=multi-spectral,
P4=detection sensitivity, P5=accuracy near the star, P6=position
and flux estimation, P7=practicality on large-scale surveys.

Table D compares the key properties of state-of-the-art algorithms
for exoplanet detection via direct imaging.

D. Additional results
In this section we provide additional visual results, and show
detection maps obtained with synthetic exoplanets. Consistent
with the experimental findings in the main body of the paper, our
method performs on par or better than baselines in ADI, and out-
performs other approaches in ASDI.
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Figure H. Detection maps on observations of HD 102647 star with
synthetic exoplanets.
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Figure I. Detection maps on observations of HD 188228 star with
synthetic exoplanets.
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Figure J. Detection maps on observations of HD 206860 star with
synthetic exoplanets.
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Figure K. Detection maps on observations of HD 216803 star with
synthetic exoplanets.
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