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Supplementary Material

In this supplemental material, we provide details of
data processing and caption generation in Section 6, show
the additional qualitative and quantitative comparison to
diffusion- and non-diffusion-based methods in Section 7,
provide details of the evaluation metrics and the perceptual
study in Section 8 and additional implementation details in
Section 9.

6. Data Processing
Geometry. To make 3D-FRONT [22] data suitable for
training and testing, we first combine 3D furniture and
3D scene meshes using 3D-FRONT annotation. 3D-
FUTURE [23] models are preliminarily converted into
high-quality watertight meshes using the Manifold [30] ap-
proach. This method can create meshes with double sur-
faces, so we remove all closed surfaces that lie within a
mesh interior. To obtain the unsigned distance field of 3D-
FRONT scenes with a resolution of 4.2 cm, we apply the
virtual scanning tool mesh2sdf [69]. Preliminarily, we re-
move the ceiling from all 3D-FRONT scenes. In addition
to the distance field, we regularly sample points with cor-

responding semantic labels belonging to scene layouts and
furniture objects to form a semantic map of a scene with
a resolution of 16.8 cm. The training chunks are obtained
by randomly cropping from scene distance fields and se-
mantic maps. We convert all test scenes into a test-suitable
format by cutting the scenes into a regular grid of overlap-
ping geometric and semantic chunks. All scene chunks are
normalized to be centered at the origin and scaled to a unit
cube.

Captions. To obtain captions for scene chunks, we use
the 3D-FRONT object annotations to automatically gener-
ate seven types of captions. These caption types include de-
scriptions with object counts or object lists without counts,
subcategory information, and spatial relationships between
objects. First, every scene annotation includes object in-
stances of 8 categories depicted in Fig. 4. For every chunk,
we add names of object categories into a caption if at least
35% of an object lies within a chunk. Here, we have two
types of text captions: explicit lists of single objects as cat-
egory names and aggregated lists where repeated objects
are counted. Another caption type can be obtained from

Figure 7. Qualitative comparison with state of the art on text-guided scene chunk generation using Qwen1.5 captions. In comparison with
PVD [86], NFD [58], SDFusion [13], and BlockFusion [73] SceneFactor generates higher-fidelity, more coherent scene structures through
our factored approach.
*Note that results for BlockFusion are generated unconditionally



Figure 8. Additional qualitative scene editing results. Generated scenes and their corresponding semantic maps are shown in the top row,
and two alternatives for each object synthesis-based edit are shown below.

the latter by adding spatial relationships between objects in
a chunk. Second, using simple proximity checks based on
Euclidean L2 distance between object centers or object cen-
ters and wall points, we can identify if two or more objects
form a group, stand across from each other, or stand next to
a wall. For every caption, we also identify if there are walls
along the borders of chunks. These three types of captions
can be augmented using 33 subcategory names from 3D-
FRONT annotation instead of category names. Finally, we
have an extra room type caption, where for every chunk, we
add room names from 3D-FRONT annotation to a caption
if at least 25% of a room lies in a chunk.

LLM-Refined Captions. Finally, we train additional
instances of SceneFactor, SDFusion [13], NFD [58],
PVD [86] with the second set of captions – com-
plex, natural text inputs. We utilize the large-language
model Qwen1.5 [64] to refine our synthetic-looking
captions using the following query: Reformulate
the following synthetic description of
a 3D scene into a human-readable but
concise, extremely minimalistic, and
non-list format in only one sentence:
<caption>, where <caption> is the caption before
LLM refinement.

Augmentations. During the training of the geometric and

semantic VQ-VAE autoencoders and diffusion models, ran-
dom 90◦-fold rotation and symmetric reflection across xz-
or yz-plane augmentations are applied to all train scene
chunks and input latent representations.

7. Additional Results

Additional Comparison to Diffusion-based Methods.
Fig. 7, 11, 12, 13, 14, 15 and 16 show additional qual-
itative comparisons with state-of-the-art baselines on scene
chunk generation using synthetic and Qwen-refined cap-
tions. PVD [86] model uses explicit point cloud diffusion,
which makes it significantly harder to generate clean and
complete scenes. NFD [58] produces much cleaner scene
layouts due to its signed distance field prediction. How-
ever, objects tend to lack details, with various low-level ge-
ometric artifacts due to the lack of structured latent space
for generation. SDFusion [13] can generate more recogniz-
able furniture. Nonetheless, due to direct text-to-geometry
prediction and the absence of convolutional attention, SD-
Fusion tends to generate more incoherent global structures
(e.g., objects penetrating each other and inconsistent walls).
Finally, BlockFusion [73] unconditional generations con-
tain inconsistent wall structures, and triplane-based genera-
tion is unable to produce accurate furniture objects in arbi-



trary chunk locations. In Tab. 9, 10, we provide the quan-
titative evaluation of our method and baseline approaches
for the geometric quality and text-guided generation us-
ing Qwen1.5 captions as input. We additionally showcase
qualitative results of scene generation with SceneFactor in
Fig. 17, 18, 19, 20 and 21.

Figs. 9 and 10 show additional qualitative comparisons
for 3D scene generation with SDFusion [13] and Block-
Fusion [73]. SDFusion tends to produce more noticeable
transitions between generated chunks, along with floating
geometric artifacts and holes in furniture objects. Both SD-
Fusion and BlockFusion generate significant artifacts, such
as holes in the floor, due to the lack of conditioning on spa-
tial information. BlockFusion struggles to outpaint objects
from one chunk to the next chunk, which results in a signif-
icantly unnatural appearance of the generated room spaces.

Finally, we provide additional qualitative scene editing
results for our method in Fig. 8. Our approach is able to
produce diverse and consistent editing results for the same
input scene.

Comparison to Non-diffusion-based Methods. In addi-
tion, we provide a comparison to 2D diffusion lifting-based
approach Text2Room [29] and a retrieval-based method
ATISS [48], for which we evaluate only independent chunks
generation since these models are not applicable for large-
scale scene generation.

Tab. 5 quantitatively evaluates the geometric qual-
ity of generated chunks against ATISS and Text2Room.
Text2Room [29] takes significant time to generate one
chunk (∼ 3.5 hours); therefore, we limited the evaluation
of this approach to 92 chunks. Our factored approach pro-
duces consistently improved geometry in comparison with
these baselines. In Tab. 7, we also show that our approach
significantly outperforms Text2Room by the CLIP score
between rendered chunks and input text captions. We do
not evaluate against the retrieval-based ATISS method be-
cause the CLIP score is biased towards non-generated but
retrieved synthetic meshes placed on top of the floor. We
found this comparison not meaningful. Instead, we evalu-
ate our approach against ATISS using a pretrained neural
listener model for the input text correspondence in Tab. 8.
A neural evaluator is trained to distinguish the target chunk
from a distracting chunk, given the text description. Given
two chunks from different methods or one chunk from a
method and another chunk from a GT set, the neural eval-
uator provides a confidence score for each of them based
on the binary classification logits. If the absolute difference
between two confidence scores ≤ 0.2, we consider the com-
parison to be confused. ATISS is not able to handle a large
diversity of text captions and is significantly inferior to our
approach in terms of text coherence.

Additional Semantic Evaluation. We provide additional

analysis of our first-stage semantic map generation model,
where the original latent diffusion model and the diffu-
sion model explicitly trained with one-hot semantic maps
are compared to each other. We first compute the average
chunk semantic accuracy with respect to text input, where
for every object class category mentioned in a caption, we
check if the corresponding object has been predicted. For
this metric, the latent-based model has accuracy of 91%
against 83% for the model without latent representation. In
Tab. 4, we provide further evaluation, which is based on
MMD/COV/1-NNA metrics.

8. Baseline Evaluation Setup
Metrics. Following the works for 3D shape generation, we
use the following metrics on point clouds extracted from
mesh surfaces:

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y ),

COV(Sg, Sr) =
|{argminY ∈Sr

D(X,Y )|X ∈ Sg}|
|Sr|

,

1-NNA(Sg, Sr) =

∑
X∈Sg

1X +
∑

Y ∈Sr
1Y

|Sg|+|Sr|
,

1X = 1[NX ∈ Sg], 1Y = 1[NY ∈ Sr],

where Sr and Sg are reference and generated sets of point
clouds extracted from ground-truth and generated mesh sur-
faces, respectively, NX is a point cloud that is closest to
X in both generated and reference dataset, i.e., NX =
argminK∈Sr∪Sg

D(X,K). We use Chamfer distance (CD)
and Earth-mover distance (EMD) as D(X,Y ) to compute
these metrics in 3D. To evaluate these metrics, we extract
4096 points from ground-truth and generated mesh surfaces
or sample 4096 points from PVD point clouds.

We utilize the official implementations of NFD [58],
PVD [86], SDFusion [13], BlockFusion [73],
Text2Room [29], and ATISS [48]. For NFD and PVD, we
do not implement the same or similar scene-aware gener-
ation mechanism, which inpaints missing chunks because
PVD leverages the explicit point cloud representation in
the diffusion model, and NFD demonstrates extremely
poor results when using an inpaiting mechanism resulting
in empty chunks which degrade in quality along the gen-
eration sequence. Text2Room and ATISS approaches are
also inapplicable for large-scale scene generation using the
outpainting mechanism. We use the same context encoding
for text captions as in SceneFactor and SDFusion for NFD



and PVD, while Text2Room, ATISS, and BlockFusion are
designed to take text as input.

To evaluate geometric quality in Tab. 1, we normalize the
ground-truth and predicted chunk meshes or point clouds
into a unit cube and extract 4096 points from mesh surface
or point cloud.

For the text-aware evaluation in Tab. 2, we train the neu-
ral listener model consisting of geometric encoder, text em-
bedded, and language encoder. Geometric encoder con-
sists of 5 ResNet blocks with GeLU activations and 2 linear
layers with ReLU activations and takes uDF of geometric
chunks as input. The input text is encoded using the same
text encoder as in SceneFactor, but with an embedding di-
mension of 128. The text features are then processed using
the LSTM [28] network. The resulting features are concate-
nated with geometric features and finally processed with a
shallow MLP network with ReLU activations.

We also evaluate using CLIP [52] score, which reflects
the consistency of generated geometry to text inputs in
CLIP space. For the CLIP score evaluation in Tab. 6, we
render 4 views of predicted meshes or point clouds and
compute the cosine distance to text caption used for gen-
eration. We add a prefix ’a render of a 3D scene with ’ to
captions for CLIP score evaluation for ones not generated
with Qwen1.5 [64] model.

Perceptual Study. To more effectively capture the percep-
tual quality of synthesized geometry, as well as adherence
to text and editing inputs, we perform a perceptual study.
We ask users to evaluate perceptual geometric quality as
well as adherence to the text prompts, both as unary evalu-
ation scores and binary comparisons between SceneFactor
and each baseline. Perceptual geometric quality is assessed
on a scale from 1 (Awful quality) to 5 (Great quality). Ad-
herence to text input is assessed on a scale from 1 (Not
matching) to 5 (Matching).

In particular, since we lack ground truth editing results as
well as baselines that perform local spatial edits, we evalu-
ate our editing performance through unary evaluation in the
perceptual study. Editing results in the perceptual study are
generated randomly across each possible editing operation.
We ask users to assess (1) if the resulting edited scene is
consistent with the given edit operation using a scale from 1
to 5; (2) the perceptual geometric quality of an edited scene
using a scale from 1 to 5; and (3) if a scene remained un-
changed outside of the editing region as either 1 (Yes) or 2
(No). In total, 21 participants took part in a perceptual study
consisting of 53 questions per user. We provide the quanti-
tative results of the conducted perceptual study in Fig. 6.

We developed a Django-based web application for the
perceptual study. In total, we have 5 sections for our sur-
vey. For the first part, an unary study on perceptual ge-
ometric quality and text consistency for generated chunks
and scenes, there are 25 questions and 5 randomly chosen

scenes and chunks for every approach. Here, the user is
asked to provide a score from 1 to 5 based on the percep-
tual geometric quality of chunks and the consistency of gen-
eration to an input text caption. In addition to chunkwise
comparison, for SDFusion, BlockFusion, and our approach,
there is also a unary study on scenes, where users are asked
to evaluate the geometric quality of the whole scene. For
SDFusion and ours, users are asked to evaluate the consis-
tency of one scene chunk to a text caption.

9. Implementation Details
Our method is implemented using PyTorch. Semantic and
geometric VQ-VAE models are trained with an Adam [34]
optimizer with learning rates 1e-4 and 2e-4 for the seman-
tic and geometric VQ-VAEs. We use AdamW [41] with a
learning rate of 1e-5 for both semantic and geometric latent
diffusion models. The semantic and geometric VQ-VAEs
are trained on 2 NVIDIA A6000s each for 320k and 160k
iterations (∼ 50 hours) until convergence. The diffusion
models are trained on 2 NVIDIA A100s each for 400k iter-
ations (∼ 100 and 150 hours, respectively).

VQ-VAE semantic and geometric models comprise 3
ResNet blocks in the encoder and 3 ResNet blocks in the de-
coder with bilinear upsampling layers and GeLU [25] non-
linearities. For the semantic VQ-VAE latent space, we en-
code semantic chunks into (1, 4, 4, 4) latent grids, with only
1 feature channel using a dictionary size of 8192. Geomet-
ric chunks are encoded using the geometric VQ-VAE model
into (1, 16, 16, 16) latent grids, with 1 feature channel using
a dictionary size of 32768.

The semantic diffusion model is trained using larger la-
tent grids of size (1, 8, 4, 8) that correspond to two twice
bigger semantic chunks in both horizontal dimensions. We
pad these grids with zeros to the shape of (1, 8, 8, 8) to en-
able compression using 4 ResNet blocks in the encoder of
the UNet model. The first 3 ResNet blocks combine convo-
lutional operations with attention layers with 8 heads. To
encode the context, we use the transformer-based model
with BERT tokenizer and context dimension of 1280 and
77 maximum number of tokens.

Analogously, the geometric diffusion model is trained
using larger latent grids of size (1, 32, 16, 32) that corre-
spond to two twice bigger geometric chunks in both hori-
zontal dimensions. The UNet model encoder consists of 3
ResNet blocks with attention layers with 8 heads in each
block. To encode the semantic context, we first encode
the input semantic chunk of size (1, 32, 16, 32) into one-hot
representation with 10 class channels. This one-hot rep-
resentation is encoded into a context feature grid of size
(128, 16, 8, 16) using the fully convolutional network with
LeakyReLU activations [74].

A large, generated geometric latent grid can be decoded
in batches or as a whole. Since the latent grid was generated



Method Independent chunks

MMD ↓ COV ↑ 1-NNA (0.5)

CD EMD CD EMD CD EMD

w/o latent 0.263 0.473 0.335 0.344 0.784 0.784

Ours 0.222 0.458 0.495 0.491 0.598 0.631

Table 4. Semantic quality of synthesized 3D scene geometry as
independent chunks.

with consistent outpainting, we do not generate noticeable
seams when decoding the full grid as chunks in a minibatch.
A minibatch of 32 latent chunks occupies <1 MB of mem-
ory; the peak memory allocation when processing this batch
is ∼11 GB. Alternatively, we can decode the full grid of the
size 4×6 chunks, corresponding to 10.8 m×16.2 m, which
occupies alone <1 MB of memory and the peak memory
of ∼75 GB when processed using an NVIDIA A100 with
80 GB of memory. Empirically, both strategies provide the
same visual results.

Method Independent chunks

MMD ↓ COV ↑ 1-NNA (0.5)

CD EMD CD EMD CD EMD

Text2Room 0.048 0.316 0.021 0.021 0.997 0.993
ATISS [48] 0.050 0.327 0.117 0.117 0.993 0.992

Ours 0.019 0.140 0.421 0.316 0.738 0.512

Table 5. Geometric quality of synthesized 3D scene geometry as
independent chunks (left) and as chunks of outpainted 3D scenes
(right).

Method Independent chunks Scene chunks

NFD [58] 26.59 26.59
PVD [86] 24.79 24.79
SDFusion [13] 28.01 27.70

Ours 29.81 29.40

Table 6. CLIP-Score evaluation of text-guided generation. Ren-
dered views of chunks generated by our method better match text
captions.

Method Independent chunks Scene chunks

Text2Room [29] 24.11 24.11
Ours 29.81 29.40

Table 7. CLIP-Score evaluation of text-guided generation. Ren-
dered views of chunks generated by our method better match text
captions.

Target (Tr) Distractor (Dis) P(Tr) P(Dis) P(conf.) P(Dis=GT) - P(Tr) ↓
Ours ATISS [48] 66% 34% 21% -

ATISS [48] GT 33% 67% 22% 34%
Ours GT 42% 58% 33% 16%

Table 8. Quality of text-guided generation using a pretrained neu-
ral listener model. Our results are preferred over that of SDFu-
sion [13], ATISS [48], and Text2Room [29], both in direct com-
parison as well as relative to ground truth.

Method Independent chunks Scene chunks

MMD ↓ COV ↑ 1-NNA (0.5) MMD ↓ COV ↑ 1-NNA (0.5)

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

NFD [58] 0.023 0.225 0.411 0.335 0.744 0.814 - - - - - -
PVD [86] 0.021 0.221 0.396 0.285 0.729 0.876 - - - - - -
SDFusion [13] 0.031 0.240 0.331 0.277 0.835 0.898 0.035 0.253 0.313 0.265 0.874 0.910
BlockFusion* [73] 0.048 0.305 0.177 0.110 0.953 0.986 0.054 0.330 0.186 0.091 0.961 0.993

Ours 0.021 0.165 0.399 0.300 0.772 0.769 0.026 0.249 0.365 0.270 0.839 0.910

Table 9. Geometric quality of synthesized 3D scene geometry as
independent chunks (left) and as chunks of outpainted 3D scenes
(right) generated with Qwen1.5 captions.

Method Independent chunks Scene chunks

NFD [58] 21.61 21.61
PVD [86] 20.32 20.32
SDFusion [13] 23.08 23.17

Ours 23.96 23.79

Table 10. CLIP-Score evaluation of text-guided generation using
Qwen1.5 captions. Rendered views of chunks generated by our
method better match text captions.



Figure 9. Additional qualitative comparisons for scene generation in comparison with SDFusion [13] and BlockFusion [73].
*Note that results for BlockFusion are generated unconditionally



Figure 10. Additional qualitative comparisons for scene generation in comparison with SDFusion [13] and BlockFusion [73].
*Note that results for BlockFusion are generated unconditionally



Figure 11. Additional qualitative comparisons to state-of-the-art diffusion-based 3D generative approaches PVD [86], NFD [58], SD-
Fusion [13], and BlockFusion [73] using Qwen1.5 captions. Our approach produces sharper scene geometry and more coherent scene
structure.
*Note that results for BlockFusion are generated unconditionally



Figure 12. Additional qualitative comparisons to state-of-the-art diffusion-based 3D generative approaches PVD [86], NFD [58], SD-
Fusion [13], and BlockFusion [73] using synthetic captions. Our approach produces sharper scene geometry and more coherent scene
structure.
*Note that results for BlockFusion are generated unconditionally



Figure 13. Additional qualitative comparisons to state-of-the-art diffusion-based 3D generative approaches PVD [86], NFD [58], SD-
Fusion [13], and BlockFusion [73] using Qwen1.5 captions. Our approach produces sharper scene geometry and more coherent scene
structure.
*Note that results for BlockFusion are generated unconditionally



Figure 14. Additional qualitative comparisons to state-of-the-art diffusion-based 3D generative approaches PVD [86], NFD [58], SD-
Fusion [13], and BlockFusion [73] using Qwen1.5 captions. Our approach produces sharper scene geometry and more coherent scene
structure.
*Note that results for BlockFusion are generated unconditionally



Figure 15. Additional qualitative comparisons to state-of-the-art diffusion-based 3D generative approaches PVD [86], NFD [58], SD-
Fusion [13], and BlockFusion [73] using Qwen1.5 captions. Our approach produces sharper scene geometry and more coherent scene
structure.
*Note that results for BlockFusion are generated unconditionally



Figure 16. Additional qualitative comparisons to state-of-the-art diffusion-based 3D generative approaches PVD [86], NFD [58], SD-
Fusion [13], and BlockFusion [73] using Qwen1.5 captions. Our approach produces sharper scene geometry and more coherent scene
structure.
*Note that results for BlockFusion are generated unconditionally



Figure 17. Additional qualitative results for scene generation with SceneFactor.



Figure 18. Additional qualitative results for scene generation with SceneFactor.



Figure 19. Additional qualitative results for scene generation with SceneFactor.



Figure 20. Additional qualitative results for scene generation with SceneFactor.



Figure 21. Additional qualitative results for scene generation with SceneFactor.
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