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A. Main theoretical results
A.1. Proofs

In this section, we provide proofs of the main theoretical
results from the paper.

Corollary 3.2. Without loss of generality, let X,Y ∈
P2(Rd) be centered, and such that Y = TX , where T is a
positive semi-definite linear transformation. Then, T is the
OT map from X to Y .

Proof. We first prove that we can consider centered distri-
butions without loss of generality. To this end, we note that

W 2
2 (X,Y ) = W 2

2 (X − E[X],Y − E[Y ])

+ ∥E[X]− E[Y ]∥2,
(6)

implying that splitting the 2-Wasserstein distance into two
independent terms concerning the L2 distance between the
means and the 2-Wasserstein distance between the centered
measures.

Furthermore, if we have an OT map T ′ between X−E[X]
and Y − E[Y ], then

T (x) = T ′(x− E[X]) + E[Y ], (7)

is the OT map between X and Y .
To prove the statement of the Corollary, we now need to

apply Theorem 3.1 to the convex ϕ(x) = xTTx, where T is
positive semi-definite.

Theorem 3.3. Let X,Y ∈ P2(Rd) be centered and
Y = TX for a positive definite matrix T . Let NX ∼
N (µ(X),Σ(X)) and NY ∼ N (µ(Y ),Σ(Y )) be their nor-
mal approximations where µ and Σ denote mean and covari-
ance, respectively. Then, W2(NX , NY ) = W2(X,Y ) and
T = Taff , where Taff is the OT map between NX and NY

and can be calculated in closed-form

Taff(x) = Ax+ b,

A = Σ(Y )
1
2

(
Σ(Y )

1
2Σ(X)Σ(Y )

1
2

)− 1
2

Σ(Y )
1
2 ,

b = µ(Y )−Aµ(X).

(8)

Proof. Corollary 3.2 states that T is an OT map, and

Σ(TNX) = TΣ(X)T = Σ(Y ).

Therefore, TNX = NY , and by Theorem 3.1, T is the OT
map between NX and NY . Finally, we compute

W 2
2 (NX , NY ) = Tr[Σ(X)] + Tr[TΣ(X)T ]

− 2Tr[T
1
2Σ(X)T

1
2 ]

= argmin
T :T (X)=Y

EX [∥X − T (X)∥2]

= W 2
2 (X,Y ).

Proposition 3.5. Let X,Y ∈ P2(Rd) and NX , NY be
their normal approximations. Then,

1. |W2(NX , NY )−W2(X,Y )| ≤
2Tr

[
(Σ(X)Σ(Y ))

1
2

]
√

Tr[Σ(X)]+Tr[Σ(Y )]
.

2. For Taff as in (4), W2(TaffX,Y ) ≤
√
2Tr [Σ(Y )]

1
2 .

Proof. By Theorem 3.4, we have W2(NX , NY ) ≤
W2(X,Y ). On the other hand,

W 2
2 (X,Y ) = min

γ∈ADM(X,Y )

∫
Rd×Rd

∥x− y∥2dγ(x, y)

≤
∫
Rd×Rd

(
∥x∥2 + ∥y∥2

)
dγ(x, y)

= Tr[Σ(X)] + Tr[Σ(Y )].

Combining the above inequalities, we get

|W2(NX , NY )−W2(X,Y )|

≤
∣∣∣√Tr[Σ(X)] + Tr[Σ(Y )]−W2(NX , NY )

∣∣∣ .
Let a = Tr[Σ(X)] + Tr[Σ(Y )], and so W 2

2 (NX , NY ) =

a− b, where b = 2Tr
[
(Σ(X)Σ(Y ))

1
2

]
. Then the RHS of

can be written as∣∣∣√a−
√
a− b

∣∣∣ = |a− (a− b)|
√
a+

√
a− b

≤ b√
a
,

where the inequality follows from positivity of
W2(NX , NY ) =

√
a− b. Letting X = TaffX in the

obtained bound gives 2).

A.2. Analytical expression in 1D for ReLU

Let X ∼ U [b, a], b < 0 and a > 0. Furthermore, let
f : x 7→ ReLU(x) = xχ(x ≥ 0) and Y = f(X).



We are interested in whether the affinity score

ρaff(X,Y ) = 1− W2(Taff(X), Y )√
2Tr [Σ(Y )]

(9)

is symmetric wrt. a and b. Here W2 is the 2-Wasserstein
distance between the laws of two random variables and Taff

is the affine transport map between X and Y given by

Taff(x) = Aaffx+ baff ,

Aaff = Σ(Y )
1
2

(
Σ(Y )

1
2Σ(X)Σ(Y )

1
2

)− 1
2

Σ(Y )
1
2 ,

baff = µ(Y )−Aaffµ(X).
(10)

Source Mean and Variance. Recall the formulae for
mean and variance for a uniform distribution

µ(X) =
a+ b

2
, Σ(X) =

(a− b)2

12

Target Mean and Variance. This time we are forced to
compute a bit. Let’s tart with the mean

µ(Y ) =
1

a− b

∫ a

b

f(x)dx

=
1

a− b

(∫ 0

b

0dx+

∫ a

0

xdx

)
=

a2

2(a− b)
.

(11)

Moving on to the variance

Σ(Y ) =
1

a− b

∫ a

b

(f(x)− µ(Y ))
2
dx

=
1

a− b

(∫ 0

b

µ(Y )2dx+

∫ a

0

(x− µ(Y ))
2
dx

)
=

1

a− b

(
(a− b)µ(Y )2 − a2µ(Y ) +

1

3
a3
)

=

(
2a

3
− µ(Y )

)
µ(Y )

=
a3(a− 4b)

12(a− b)2

(12)
Affine transport map. Substituting the computed statis-

tics into equation 9 and abusing their scalar nature, we get

Aaff =
Σ(Y )

1
2

Σ(X)
1
2

=

√
a3(a− 4b)

(a− b)2
,

baff = µ(Y )−Aaffµ(X),

=
a

2(a− b)

(
a−

(
a+ b

a− b

)(√
a(a− 4b)

))
(13)

2-Wasserstein Distance. Recall that the 2-Wasserstein
distance between scalars is simply a sorting problem: sort
the source and target and match the elements with similar
indices. Luckily in our case, both Taff and f = ReLU
preserve order as increasing functions, and hence

W 2
2 (Taff(X), Y ) = W 2

2 (Taff(X), ReLU(X))

=
1

a− b

∫ a

b

(Taff(x)−ReLU(x))
2
dx

(14)
Before continuing the computation, remember that due to

affine transport, µ(T (X)) = µ(Y ) and Σ(T (X)) = Σ(Y ).
Therefore

Σ(Taff(X)) = Σ(Y )

⇒ E
[
Taff(X)2

]
− E [Taff(X)]

2
= E

[
Y 2

]
− E [Y ]

2

⇒ E
[
Taff(X)2

]
= E

[
Y 2

]
.

(15)

Using this, we can continue the computation in equa-
tion 14

W 2
2 (Taff(X), Y )

=
2

a− b

(∫ a

b

ReLU2(x)dx−
∫ a

b

ReLU(x)Taff(x)dx

)
=

2

a− b

(∫ a

0

x2dx−
∫ a

0

(Aaffx
2 + baffx)dx

)
=

a2

3(a− b)
(2a (1−Aaff)− 3baff)

=
2

3
µ(Y )(2a(1−Aaff)− 3baff)

=
a3

6(a− b)2

(
(a− 4b) +

√
a(a− 4b)

(
−a+ 3b

a− b

))
.



B. Affinity scores of other popular activation
functions

Many works aimed to improve the way how the non-linearity
– represented by activation functions – can be defined in
DNNs. As an example, a recent survey on the commonly
used activation functions in deep neural networks [10] iden-
tifies over 40 activation functions with first references to
sigmoid dating back to the seminal paper [49] published in
late 80s. The fashion for activation functions used in deep
neural networks evolved over the years in a substantial way,
just as the neural architectures themselves. Saturating ac-
tivations, such as sigmoid and hyperbolic tan, inspired by
computational neuroscience were a number one choice up
until the arrival of rectifier linear unit (ReLU) in 2010. Af-
ter being the workhorse of many famous models over the
years, the arrival of transformers popularized Gaussian Error
Linear Unit (GELU) which is now commonly used in many
large language models including GPTs.

We illustrate in Figure 8 the affinity scores obtained af-
ter a single pass of the data through the following activa-
tion functions: Sigmoid, ReLU [16], GELU [24], ReLU6
[27], LeakyReLU [39] with a default value of the slope,
Tanh, HardTanh, SiLU [12], and HardSwish [26]. As
the non-linearity of activation functions depends on the
domain of their input, we fix 20 points in their domain
equally spread in [−20, 20] interval. We use these points
as means {mi}20i=1 of Gaussian distributions from which
we sample 1000 points in R300 with standard deviation
(std) σ taking values in [2, 1, 0.5, 0.25, 0.1, 0.01]. Each
sample denoted by X

σj
mi is then passed through the acti-

vation function act ∈ {sigmoid,ReLU,GELU} to obtain
ρ
mi,σj

aff := ρaff(X
σj
mi , act(Xσj

mi)). Larger std values make it
more likely to draw samples that are closer to the region
where the studied activation functions become non-linear.
We present the obtained results in Figure S2 where each
of 20 boxplots showcases median(ρmi,σ·

aff ) values with 50%
confidence intervals and whiskers covering the whole range
of obtained values across all σj .

This plot allows us to derive several important conclu-
sions. We observe that each activation function can be char-
acterized by 1) the lowest values of its non-linearity obtained
for some subdomain of the considered interval and 2) the
width of the interval in which it maintains its non-linearity.
We note that in terms of 1) both GELU and ReLU may at-
tain affinity scores that are close to 0, which is not the case
for Sigmoid. For 2), we observe that the non-linearity of
Sigmoid and GELU is maintained in a wide range, while
for ReLU it is rather narrow. We can also see a distinct
pattern of more modern activation functions, such as SiLU
and HardSwish having a stronger non-linearity pattern in
large subdomains. We also note that despite having a shape
similar to Sigmoid, Tanh may allow for much lower affinity

scores. Finally, the variations of ReLU seem to have a very
similar shape with LeakyReLU being on average more linear
than ReLU and ReLU6.
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Figure 8. Median affinity scores of Sigmoid, ReLU, GELU, ReLU6, LeakyReLU with a default value of slope, Tanh, HardTanh, SiLU, and
HardSwish obtained across random draws from Gaussian distribution with a sliding mean and varying stds used as their input. Whiskers
of boxplots show the whole range of values obtained for each mean across all stds. The baseline value is the affinity score obtained for
a sample covering the whole interval. The ranges and extreme values of each activation function over its subdomain are indicative of its
non-linearity limits.

C. Implementation details
Dimensionality reduction Manipulating 4-order tensors
is computationally prohibitive and thus we need to find an
appropriate lossless function r to facilitate this task. One
possible choice for r may be a vectorization operator that
flattens each tensor into a vector. In practice, however, such
flattening still leads to very high-dimensional data represen-
tations. In our work, we propose to use averaging over the
spatial dimensions to get a suitable representation of the ma-
nipulated tensors. In Figure 9 (top), we show that the affinity
score is robust wrt such an averaging scheme and maintains
the same values as its flattened counterpart.

Computational considerations The non-linearity signa-
ture requires calculating the affinity score over “wide” ma-
trices. Indeed, after the reduction step is applied to a batch

of n tensors of size h× w × c, we end up with matrices of
size n× c where n may be much smaller than c. This is also
the case when input tensors are 2D when the batch size is
smaller than the dimensionality of the embedding space. To
obtain a well-defined estimate of the covariance matrix in
this case, we use a known tool from the statistics literature
called Ledoit-Wolfe shrinkage [34]. In Figure 9 (bottom),
we show that shrinkage allows us to obtain a stable estimate
of the affinity scores that remain constant in all regimes.

Robustness to batch size and different seeds In this sec-
tion, we highlight the robustness of the non-linearity sig-
nature with respect to the batch size and the random seed
used for training. To this end, we concentrate on VGG16
architecture and CIFAR10 dataset to avoid costly Imagenet
retraining. In Figure 10, we present the obtained result
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Figure 9. (Top) Affinity score is robust to the dimensionality re-
duction both when using averaging and summation over the spatial
dimensions; (Middle) When d > n, sample covariance matrix
estimation leads to a lack of robustness in the estimation of the
affinity score; (Bottom) Shrinkage of the covariance matrix leads
to constant values of the affinity scores with increasing d.

where the batch size was varied between 128 and 1024 with
an increment of 128 (left plot) and when VGG16 model
was retrained with seeds varying from 1 to 9 (right plot).
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Figure 10. Non-linearity signature of VGG16 on CIFAR10 with a
varying batch size (left) and when retrained from 9 different random
seeds (right).
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Figure 11. Non-linearity signatures of VGG16 on CIFAR10 in the
beginning and end of training on Imagenet.

The obtained results show that the affinity score is robust to
these parameters suggesting that the obtained results are not
subject to a strong stochasticity.

Impact of training Finally, we also show how a non-
linearity signature of a VGG16 model looks like at the be-
ginning and in the end of training on Imagenet. We extract
its non-linearity signature at initialization when making a
feedforward pass over the whole CIFAR10 dataset and com-
pare it to the non-linearity signature obtained in the end. In
Figure 11, we can see that at initialization the network’s
non-linearity signature is increasing, reaching almost a per-
fectly linear pattern in the last layers. Training the network
enhances the non-linearity in a non-monotone way. Impor-
tantly, it also highlights that the non-linearity signature is
capturing information from the training process.



D. Raw signatures
In Figure 12, we portray the raw non-linearity signatures of
several representative networks studied in the main paper.
We use different color codes for distinct activation functions
appearing repeatedly in the considered architecture (for in-
stance, every first ReLU in a residual block of a Resnet).
We also indicate the mean standard deviation of the affinity
scores over batches in the title.

We see that the non-linearities across ReLU activations
in all of Alexnet’s 8 layers remain stable. Its successor,
VGG network, reveals tiny, yet observable, variations in the
non-linearity propagation with increasing depth and, slightly
lower overall non-linearity values. We attribute this to the
decreased size of the convolutional filters (3x3 vs. 7x7).
The Googlenet architecture was the first model to consider
learning features at different scales in parallel within the
so-called inception modules. This add more variability as
affinity scores of activation in Googlenet vary between 0.6
and 0.9. Despite being almost 20 times smaller than VGG16,
the accuracy of Googlenet on Imagenet remains compara-
ble, suggesting that increasing and varying the linearity is
a way to have high accuracy with a limited computational
complexity compared to predecessors. This finding is fur-
ther confirmed with Inception v3 that pushed the spread of
the affinity score toward being more linear in some hidden
layers. When comparing this behavior with Alexnet, we note
just how far we are from it. Resnets achieve the same spread
of values of the non-linearity but in a different, and arguably,
simpler way. Indeed, the activation after the skip connection
exhibits affinity scores close to 1, while the activations in the
hidden layers remain much lower. Densenet, that connect
each layer to all previous layers and not just to the one that
precedes it, is slightly more non-linear than Resnet152, al-
though the two bear a striking similarity: they both have an
activation function that maintains the non-linearity low with
increasing depth. Additionally, transition layers in Densenet
act as linearizers and allow it to reset the non-linearity propa-
gation in the network by reducing the feature map size. ViTs
(Large with 16x16 and 32x32 patch sizes, and Huge with
14x14 patches) are all highly non-linear models to the degree
yet unseen. Interestingly, as seen in Figure 13 the patch size
affects the non-linearity propagation in a non-trivial way: for
16x16 size a model is more non-linear in the early layers,
while gradually becoming more and more linear later, while
32x32 patch size leads to a plateau in the hidden layers of
MLP blocks, with a steep change toward linearity only in the
final layer. We hypothesize that attention modules in ViT act
as a focusing lens and output the embeddings in the domain
where the activation function is the most non-linear.

Finally, we explore the role of increasing depth for VGG
and Resnet architectures. We consider VGG11, VGG13,
VGG16 and VGG19 models in the first case, and Resnet18,
Resnet34, Resnet50, Resnet101 and Resnet152. The results

are presented in Figure 14 and Figure 15 for VGGs and
Resnets, respectively. Interestingly, VGGs do not change
their non-linearity signature with increasing depth. In the
case of Resnets, we can see that the separation between more
linear post-residual activations becomes more distinct and
approaches 1 for deeper networks.
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Figure 12. Raw non-linearity signatures of popular DNN architectures, plotted as affinity scores over the depth throughout the network.
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Figure 13. ViTs: Large ViT with 16x16 and 32x32 patch sizes and Huge ViT.

E. Detailed comparisons between architectures

We consider the following metrics as 1) the linear CKA [30]
commonly used to assess the similarity of neural representa-
tions, the average change in 2) SPARSITY and 3) ENTROPY
before and after the application of the activation function
as well as the 4) Frobenius NORM between the input and
output of the activation functions, and the 5) R2 score be-
tween the linear model fitted on the input and the output of
the activation function. We present in Tab. 2, the detailed
values of Pearson correlations obtained for each architecture

and all the metrics considered in this study. In Figure 16,
we show the full matrix of pairwise DTW distances [52]
obtained between architectures, then used to obtain the clus-
tering presented alongside. For the latter, we applied multi-
dimensional scaling algorithms to the linkage matrix of the
36 considered architectures.
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Figure 14. Impact of depth on the non-linearity signature of VGGs.
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Figure 15. Impact of depth on the non-linearity signature of Resnets.
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Figure 16. Full matrix of DTW distances between non-linearity
signatures.

Figure 17. Multi-dimensional scaling of the linkage matrix obtained
from the pairwise DTW distances between non-linearity signatures.

F. Results on more datasets

Below, we compare the results obtained on CIFAR10, CI-
FAR100 datasets as well as when the random data tensors



Model CKA Norm Sparsity Entropy R2

alexnet -0.75 -0.86 0.14 -0.80 -0.41
vgg11 -0.07 -0.76 -0.15 -0.95 -0.27
vgg13 0.08 -0.66 -0.23 -0.93 -0.26
vgg16 0.01 -0.63 -0.19 -0.88 -0.17
vgg19 -0.01 -0.62 -0.15 -0.86 -0.14
googlenet 0.74 -0.60 -0.83 -0.49 0.73
inception v3 0.69 -0.66 -0.75 -0.45 0.35
resnet18 0.59 -0.17 -0.67 -0.30 -0.44
resnet34 0.48 -0.18 -0.65 -0.19 -0.08
resnet50 0.56 -0.60 -0.71 -0.50 -0.78
resnet101 0.51 -0.57 -0.70 -0.51 -0.64
resnet152 0.52 -0.51 -0.68 -0.42 -0.48
densenet121 0.84 -0.75 -0.87 -0.62 0.82
densenet161 0.87 -0.74 -0.87 -0.67 0.81
densenet169 0.87 -0.74 -0.87 -0.67 0.81
densenet201 0.89 -0.75 -0.91 -0.67 0.90
efficientnet b1 0.35 -0.41 -0.39 0.01 0.03
efficientnet b2 0.49 -0.02 -0.44 -0.06 0.34
efficientnet b3 0.32 -0.12 -0.18 -0.13 0.18
efficientnet b4 0.30 -0.51 -0.29 -0.44 0.11
vit b 32 0.47 -0.31 -0.29 0.39 0.51
vit l 32 -0.14 -0.61 -0.47 -0.02 -0.06
vit b 16 -0.27 -0.71 0.04 0.39 -0.22
vit l 16 -0.39 -0.89 -0.66 -0.23 -0.24
vit h 14 -0.77 -0.83 0.92 0.31 -0.49
swin t -0.12 -0.39 -0.02 -0.42 -0.06
swin s -0.003 -0.61 -0.31 0.18 -0.03
swin b -0.32 -0.59 -0.43 0.42 -0.32
convnext tiny 0.77 -0.01 -0.04 0.09 0.80
convnext small 0.57 0.22 0.25 0.13 0.72
convnext base 0.67 0.41 0.35 -0.03 0.82
convnext large 0.75 0.23 0.35 -0.10 0.84
Average 0.31 ± 0.45 -0.44 ± 0.35 -0.31 ± 0.43 -0.29 ± 0.39 0.13 ± 0.50

Table 2. Pearson correlations between the affinity score and other metrics, for all the architectures evaluated in this study. We see that no
other metric can reliably provide the same information as the proposed non-linearity signature across different neural architectures.

are passed through the network. As the number of plots for
all chosen 33 models on these datasets will not allow for a
meaningful visual analysis, we rather plot the differences –
in terms of the DTW distance – between the non-linearity
signature of the model on Imagenet dataset with respect
to three other datasets. We present the obtained results in
Figure 18.

We can see that the overall deviation for CIFAR10 and CI-
FAR100 remains lower than for Random dataset suggesting
that these datasets are semantically closer to Imagenet.

G. Results for self-supervised methods

In this section, we show that the non-linearity signature
of a network remains almost unchanged when considering
other pertaining methodologies such as for instance, self-
supervised ones. To this end, we use 17 Resnet50 architec-
ture pre-trained on Imagenet within the next 3 families of
learning approaches:
1. SwAV [4], DINO [5], and MoCo [22] that belong to the

family of contrastive learning methods with prototypes;
2. Resnet50 [21], Wide Resnet50 [67], TRex, and TRex*

[53] that are supervised learning approaches;
3. SCE [8], Truncated Triplet [66], and ReSSL [68] that

perform contrastive learning using relational information.
From the dendrogram presented in Figure 19, we can observe
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Figure 18. Deviation in terms of the Euclidean distance of the non-linearity signature obtained on CIFAR10, CIFAR100, and Random
datasets from the non-linearity signature of the Imagenet dataset.

Criterion Mean ± std
ρaff 0.76±0.04
Linear CKA 0.90±0.07
Norm 448.56±404.61
Sparsity 0.56±0.16
Entropy 0.39±0.46

Table 3. Robustness of the different criteria when considering the
same architectures pre-trained for different tasks. Affinity score
achieves the lowest standard deviation suggesting that it is capable
of correctly identifying the architecture even when it was trained
differently.

that the DTW distances between the non-linearity signatures
of all the learning methodologies described above allow us
to correctly cluster them into meaningful groups. This is
rather striking as the DTW distances between the different
instances of the Resnet50 model are rather small in magni-
tude suggesting that the affinity scores still retain the fact
that it is the same model being trained in many different
ways.

While providing a fine-grained clustering of different pre-
trained models for a given fixed architecture, the average
affinity scores over batches remain surprisingly concentrated
as shown in Tab. 3. This hints at the fact that the non-linearity
signature is characteristic of architecture but can also be sub-
tly multi-faceted when it comes to its different variations.
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Figure 19. Hierarchical clustering of supervised and self-supervised pre-trained Resnet50 using the DTW distances between their non-
linearity signatures.
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