
Inference-Scale Complexity in ANN-SNN Conversion for High-Performance and
Low-Power Applications

Supplementary Material

1. Proof for Error Bound
Theorem 1 The layer-wise conversion error can be divided
into intra-layer and inter-layer errors:

el ⩽

intra-layer error︷ ︸︸ ︷
∥S(ẑl; θl)− A(ẑl)∥2 +

inter-layer error︷ ︸︸ ︷
∥wl∥2el−1 . (S1)

Given that both ANN and SNN models receive the same
input in the first layer, leading to e0 = 0, the upper bound
for the conversion error between ANN and SNN models in
an L-layer fully-connected network is given by

emodel = eL ⩽
L∑

l=1

(
L∏

k=l+1

∥wk∥2

)∥∥S(ẑl; θl)− A(ẑl)
∥∥
2

(S2)

proof 1 (error bound) According to the definition of the
conversion error (Equation (7)), we have

el = ∥S(ẑl)− A(zl)∥2
= ∥S(ẑl)− A(ẑl) + A(ẑl)− A(zl)∥2 (S3)

⩽ ∥S(ẑl)− A(ẑl)∥2 + ∥A(ẑl)− A(zl)∥2

Here the ANN activation function is defined a s A(·) =
R(·) = ReLU(·), where ReLU(·) is ReLU function. We
first prove that ∥R(ẑl) − R(zl)∥2 ⩽ ∥(ẑl − zl)∥2. To do
so, we analyze four possible cases for zli and ẑli, which are
individual elements of zl and ẑl, respectively.

if ẑli ⩾ 0, zli ⩾ 0, (S4)

then (R(ẑli)− R(zli))
2 = (ẑli − zli)

2

if ẑli ⩾ 0, zli ⩽ 0,

then (R(ẑli)− R(zli))
2 = (ẑli − 0)2 ⩽ (ẑli − zli)

2

if ẑli ⩽ 0, zli ⩾ 0,

then (R(ẑli)− R(zli))
2 = (0− zli)

2 ⩽ (ẑli − zli)
2

if ẑli ⩽ 0, zli ⩽ 0,

then (R(ẑli)− R(zli))
2 = (0− 0)2 ⩽ (ẑli − zli)

2

Therefore, for each element in vector zl and ẑl, we can
conclude that ∀i, (A(ẑli)−A(zli))

2 ⩽ (ẑli − zli)
2. From this,

we can further derive

∥R(ẑl)− R(zl)∥2 ⩽ ∥(ẑl − zl)∥2. (S5)

Back to the main theorem, we further rewrite the conversion
error bound as

el ⩽ ∥S(ẑl)− A(ẑl)∥2 + ∥(ẑl − zl)∥2
⩽ ∥S(ẑl)− A(ẑl)∥2 + ∥wl(S(ẑl−1)− A(zl−1))∥2

(S6)

⩽ ∥S(ẑl)− A(ẑl)∥2 + ∥wl∥2∥S(ẑl−1)− A(zl−1)∥2
(S7)

⩽

intra-layer error︷ ︸︸ ︷
∥S(ẑl)− A(ẑl)∥2 +

inter-layer error︷ ︸︸ ︷
∥wl∥2el−1 . (S8)

Note that ∥wl∥2 in Equation S7 represents the matrix norm
(p=2) or spectral norm of the weight matrix wl, and the
derivation from Equation S6 to S7 holds true because of the
property of the spectral norms. From the inequality above,
we can find that the layer-wise conversion error is bounded
by two components: the intra-layer error, which is layer-wise
error when both the analog and spiking neurons receive the
same input, and the inter-layer error, which is proportional
to the layer-wise error in the previous layer.

We further derive the conversion error between models,
which corresponds to the conversion error in the last output
layer. For simplicity, we define the intra-layer error in each
layer as εl. According to Equation S8, we get

eL ⩽ ∥S(ẑL)− A(ẑL)∥2 + ∥wL∥2eL−1

= εL + ∥wL∥2eL−1. (S9)

Also, since we use direct input coding for SNNs, there is no
conversion error in the 0-th layer, and the conversion error
in the first layer is given by e1 = ε1 = ∥S(ẑ1) − A(ẑ1)∥2.
By iteratively applying this relationship across layers, we
can derive the error bound for arbitrary layer. The error
bound for the final output should be

eL ⩽ εL + ∥wL∥2eL−1

⩽ εL + ∥wL∥2εL−1 + ∥wL∥2∥wL−1∥2eL−2

⩽ εL + ∥wL∥2εL−1 + ...+ ∥wL∥2...∥w2∥2ε1

=

L∑
l=1

(
L∏

k=l+1

∥wk∥2

)
εl,

(
Define

L∏
k=L+1

∥wk∥2 = 1

)

=

L∑
l=1

(
L∏

k=l+1

∥wk∥2

)∥∥S(ẑl; θl)− A(ẑl)
∥∥
2

(S10)



2. Proof for Update Rule
The final update rule for the local threshold balancing algo-
rithm at each step is:

∆θl = −
N∑
i=1

2(ẑli − θl)H(ẑli − θl), (S11)

θl ← θl − η∆θl. (S12)

proof 2 As we have mentioned in the main text, our goal is
to optimize the following equation:

∀ l, argmin
θl

(
L∏

k=l+1

∥wk∥2

)∥∥C(ẑl; θl)− A(ẑl)
∥∥2
2
.

(S13)

We can apply the gradient descent method to iteratively
update the threshold value by subtracting the first-order
derivative with respect to the threshold, given by:

∆θl =
∂
(∏L

k=l+1∥wk∥2
)∥∥C(ẑl; θl)− A(ẑl)

∥∥2
2

∂θl
. (S14)

Considering each element ẑli in the vector ẑl, for each i, we
have:

∂
(∏L

k=l+1∥wk∥2
) (

C(ẑl
i; θ

l)− A(ẑl
i)
)2

∂θl
(S15)

=


−

(
L∏

k=l+1

∥wk∥2

)
· 2(ẑli − θl) if ẑli > θl

0 if ẑli ⩽ θl

= −

(
L∏

k=l+1

∥wk∥2

)
· 2(ẑli − θl)H(ẑli − θl)

Therefore, consider the derivative for θl over the whole vec-
tor with N elements in total, we have

∆θl =
∂
(∏L

k=l+1∥wk∥2
)∑N

i=1

(
C(ẑl

i; θ
l)− A(ẑl

i)
)2

∂θl

(S16)

= −

(
L∏

k=l+1

∥wk∥2

)
N∑
i=1

2(ẑli − θl)H(ẑli − θl).

Since
(∏L

k=l+1∥wk∥2
)

is a constant with fixed weight ma-
trix, we incorporate this term into the learning rate param-
eter η. Consequently, the final update rule can be derived

as:

∆θl = −
N∑
i=1

2(ẑli − θl)H(ẑli − θl), (S17)

θl ← θl − η∆θl. (S18)

3. Proof for Pre-Neuron Max pooling Layer
Theorem 2 The order of max pooling layer and ReLU acti-
vation layer does not affect the output results.

maxR(z) = R(max z), when max(z) > 0. (S19)

proof 3 Since R(x) = max(x, 0), we can rewrite the
left hand side as max (R(z)) = max(max(z,0)) =
max(z). Similarly, the right-hand side can be written as
max(max(z), 0) = max(z), which is equal to the left-hand
side.

4. Details for Experiments
4.1. Pseudo-code for Full Conversion Pipeline
In this section, we present the pseudo-code of the full conver-
sion pipeline in Algorithm 1. At the start of the conversion
process, the model is initialized by replacing all activation
layers with clipping function C(·;θl) and the initial threshold
values θl for each layer are set to 0. Additionally, all max
pooling layers are replaced with pre-neuron max pooling
layers, and all other modules are set to inference mode.

During local threshold balancing process, input images
are sampled from the training dataset at each iteration and fed
into the model. The threshold values can be optimized during
forward propagation without global backpropagation. After
threshold value optimization, the delayed time is calculated
by running another iteration of the model with sampled
images from the dataset.

The pseudo-code of the SNN inference process with de-
layed evaluation technique is presented in Algorithm 2. The
delayed time is determined based on the given inference time
and the estimated delay time. After t0, the outputs of SNN
model are accumulated and the average output value is used
as the final prediction.

4.2. Image Classification
When conducting experiments on the ImageNet dataset, we
use the pre-trained models from TorchVision. During both
the threshold balancing process and inference, we normalize
the image to standard Gaussian distribution and Crop the
image to size 224×224. The iteration step number of the
threshold balancing process is 1000 unless mentioned.

4.3. Semantic Segmentation
For the experiments of Pascal VOC 2012 dataset, the weights
of the original ANN models are from open-source Github



Algorithm 1 Efficient ANN-SNN Conversion Algorithm
Input:
ANN model pre-trained weight w;
Training dataset D;
Iteration steps K;
Learning rate η;
Output:
SNN(·;w,θ)
Delayed time t0;

1: // Initialize model
2: for l = 1 to L do
3: Set all activation layer as C(·; θl)
4: Set pre-neuron max-pooling layer
5: Set the initial value of threshold θl = 0
6: Set initial weights for SNN as ANN pre-trained

weights w
7: end for
8:
9: // Threshold balancing algorithm

10: step = 0
11: while step++ < K do
12: Sample input images x0 in Dataset D
13: for l = 1 to L do
14: zl = wlxl−1

15: xl = C(zl; θl)
16: ∆θl = −

∑N
i=1 2(z

l
i − θl)H(zli − θl)

17: θl ← θl − η∆θl

18: end for
19: end while
20:
21: // Delayed time calculation
22: Sample input images x0 in Dataset D
23: t0 = 0
24: for l = 1 to L do
25: zl = wlxl−1

26: t0 = t0 +
(
θl − vl(0)

)
/
(
maxi

(
R(zl)

))
27: xl = C(zl; θl)
28: end for
29:
30: // Initialize SNN model
31: for l = 1 to L do
32: vl(0)← θl/2
33: end for
34: return SNN(·;w,θ), t0

repositories. The data preprocessing operations during both
the threshold balancing process and inference process in-
clude resizing the data into 256×256 image and normalizing
the data value. The delayed evaluation step length is set to
half of the inference step length. The iteration step number
of the threshold balancing process is set to 4 traversals of

Algorithm 2 SNN Inference with Delayed Evaluation Strat-
egy
Input:
SNN model SNN(·;w,θ);
Input Image x0;
Inference steps T ;
Delayed time t0;
Output:
Prediction o;

1: // SNN inference
2: step = 0
3: if t0 > T − 4 then
4: t0 = T − 4
5: end if
6: o = 0
7: for t = 1 to T do
8: for l = 1 to L do
9: zl = wlxl−1

10: xl = S(zl; θl)
11: end for
12: if t > t0 then
13: o = o+ xl

14: end if
15: end for
16: o = o/(T − t0)
17:
18: // Reset SNN model
19: for l = 1 to L do
20: Reset S(·; θl)
21: vl(0)← θl/2
22: end for
23: return o

the training set for FCN and 5 traversals of the training set
for DeepLab. Moreover, Pascal VOC 2012 is augmented by
the extra annotations provided by SBD, resulting in 10582
training images.

For the experiments of the MS COCO 2017 dataset, the
weights are directly downloaded from TorchVision. When
performing data preprocessing, We first resize the input data
into 400×400 images and normalize the images. The itera-
tion step number of the threshold balancing process is set to
3 traversals of the training set. Note that these weights were
trained on a subset of MS COCO 2017, using only the 20
categories that are present in the Pascal VOC dataset. This
subset contains 92518 images for training.

4.4. Object Detection
For our object detection experiments, we utilized pre-trained
weights from TorchVision. During the threshold balanc-
ing process, we use similar dataset augmentation as SSD
[2]. The input images are augmented by RandomPhotomet-



ricDistort, RandomZoomOut, RandomIoUCrop, and Ran-
domHorizontalFlip. The iteration steps are set to 5000 for
each model. During the evaluation of converted models, we
directly use normalized images as inputs.

4.5. Video Classification
The pre-trained weights for video classification tasks are
directly downloaded from TorchVision. We split the original
validation set of Kinetics-400 into a new training set and
a new test set. The resulting training set contains 12000
videos and the new test set contains 7881 videos. The
accuracies are estimated on video-level with parameters
frame rate=15, clips per video=5, and clip len=16. The
frames are resized to 128×171, followed by a central crop
resulting into 112×112 normalized frames.

5. Visualizations on Object Detection and Se-
mantic Segmentation

In Figure S1 and Figure S2 we present the visualization
of the semantic segmentation and object detection results.
In each row of the figure, we illustrate the visualization of
ground truth, original image (only for semantic segmenta-
tion), results from original ANN and results from converted
SNN at different time-steps.

6. Energy Consumption Analysis
Since the low-power consumption is one of the advantages
of SNNs, we calculate the average energy consumption of
the converted SNNs and compare it with the energy con-
sumption of the ANN counterparts. We employed a method
similar to previous work, estimating the energy consumption
of the SNN by calculating the number of Synaptic Operations
(SOP). Since the total spike activity of the SNN increases
proportionally with the inference time, we define SOP90 and
SOP95 as the metrics for converted SNNs on ImageNet. The
SOP90/95 denotes the average synaptic operation per image
when the accuracy of the converted SNN exceeds 90%/95%
of the original ANN while SNN90-FPS/W denotes the total
number of frames per joule when the performance of the
converted SNN exceeds 90%. In order to further estimate
the energy consumption, we utilize the average energy ef-
ficiency of 77fJ/SOP for SNN and 12.5pJ/FLOP for ANN
[3] to calculate the required energy for one frame. The de-
tailed comparison is demonstrated in the table below. For

Architecture SOPs90 SOPs95 ANN-FPS/W SNN90-FPS/W

ResNet-34 20.86 33.42 22 622

Table S1. Energy consumption estimation on ImageNet dataset

ImageNet classification tasks, using the same ResNet-34
architecture, the SNN is over 28 times more energy efficient

than the original ANN while maintaining 90% performance
of the original ANN, achieving an estimation of 622 FPS/W
energy efficiency while deployed on neuromorphic hard-
ware. It is worth noticing the SNN can be easily obtained
by converting open-source pre-trained ANN models with
negligible training cost and then deploy on specific hardware
for energy-saving purpose.

7. Detailed Discussion on Training Cost
Besides general discussion of the inference-scale complexity
of the overall conversion framework, we also demonstrate
the efficiency of our method by comparing the total time
required for three different post-training conversion methods,
including LCP, ACP [1], and our method. For all methods,
we used the same environment with a 4090 GPU for the
evaluation. Here we present the results using ResNet-34
architecture on ImageNet in the below table.

Method T=32 T=64 T=128 T=256 T=512

Ours 92.73 92.73 92.73 92.73 92.73

LCP 70.23 114.19 201.82 376.98 727.66

ACP 829.49 1218.93 2018.56 3731.53 7059.09

Table S2. Comparison of conversion time with different post-
training methods

It is worth noting that one only needs to run the threshold
optimization algorithm once in our method and the obtained
SNN can be applied with any simulation time-steps. While
in LCP/ACP, calibration is required for every simulation
steps. Therefore, in the table above, our algorithm only takes
93 seconds to get the converted SNN and is applicable to any
time-steps. Although LCP has an advantage at 32 steps, the
required conversion time still increases with the total time-
steps and loses its advantage at 64 steps. Moreover, ACP
takes much more time because it involves weight updates.
This is because our method only requires a similar training
cost as ANN inference, which is lower than the computa-
tional cost of SNN inference and weight update required in
LCP/ACP.



GroundTruth ANN T=32 T=64 T=128 T=256 T=512

Figure S1. Illustration for detection examples of SNNs on different inference steps



Original GroundTruth ANN T=32 T=64 T=128 T=256 T=512

Figure S2. Illustration for segmentation examples of SNNs on different inference steps



References
[1] Yuhang Li, Shikuang Deng, Xin Dong, and Shi Gu. Error-

aware conversion from ann to snn via post-training parameter
calibration. International Journal of Computer Vision, 2024. 4

[2] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
SSD: Single shot multibox detector. In European Conference
on Computer Vision, 2016. 3

[3] Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald,
Fabio Stefanini, Dora Sumislawska, and Giacomo Indiveri. A
reconfigurable on-line learning spiking neuromorphic proces-
sor comprising 256 neurons and 128K synapses. Frontiers in
Neuroscience, 2015. 4


	Proof for Error Bound
	Proof for Update Rule
	Proof for Pre-Neuron Max pooling Layer
	Details for Experiments
	Pseudo-code for Full Conversion Pipeline
	Image Classification
	Semantic Segmentation
	Object Detection
	Video Classification

	Visualizations on Object Detection and Semantic Segmentation
	Energy Consumption Analysis
	Detailed Discussion on Training Cost

