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A. Implementation and Model Details
We provide an overview of the model architectures
and experimental setups used in EIFER to facilitate re-
implementation. This, combined with the publicly available
source code1, allows for a deeper understanding of EIFER’s
inner workings and suggests that the model architecture has
a minor impact on the overall training pipeline.

EIFER is composed of three primary model components,
which are duplicated for both the CSN and CNS cycles. No-
tably, during the evaluation of EMG2Exp and Exp2EMG,
the CSN cycle plays a crucial role. However, it is essential
to recognize that the CSN cycle cannot be trained in isola-
tion from the other component, as the two cycles are inter-
connected and interdependent.

1Project page: https://eifer-mam.github.io

All models are implemented in PyTorch [37], and we
utilize PyTorch3D [39] for rendering the FLAME [28] mesh
to disentangle facial geometry from appearance.

A.1. Encoder and Face Model
We adopt the triple encoder structure from SMIRK [40] and
utilize MobileNetV3 as the backbone network. This allows
us to initialize EIFER with pre-trained SMIRK models, pro-
viding several benefits.

Firstly, the pre-trained models are assumed to be robust
to rough alignment without facial landmarks, as demon-
strated in the ablation studies of [40]. Secondly, we assume
accurate facial feature extraction for non-sEMG occluded
faces, enabling the other encoder to mimic the correct one
under occlusion. Lastly, this initialization ensures compa-
rability with existing SMIRK results, as the updated model
parameters are robust to sEMG occlusion. The model ar-
chitecture is illustrated in Figure 1.

Figure 1. EIFER Encoder Architecture We utilize the tripe
encoder setup of SMIRK [40] to predict the FLAME parame-
ters [28]. Therefore, each sub-encoder can be used independently
of the given task. In our case, EIFER updates the pre-trained mod-
els to handle sEMG occlusion.

We employ the intermediate FLAME [28] face repre-
sentation, comprising 300 shape and 50 expression com-
ponents to utilize pre-trained weights. Additionally, we in-
clude three components for jaw movement and two blend-
shapes for the eyelids [54]. The position sub-encoder es-
timates the head rotation and position, modeled by camera
parameters.

We use these shape and expression parameters to con-
struct the 3D FLAME mesh. A differential renderer [39]
then generates a monochromatic render of the frontal face
view. This rendered face contains essential facial geom-
etry information following the same denomination as in
[26, 40]. The generator model must restore the face cor-
rectly from this rendered face.
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A.2. Generator Model
The generator model aims to reconstruct the input face
faithfully. Unlike traditional rendering approaches [7, 8, 14,
26], we employ implicit neural rendering [2, 3, 40] for its
robustness.

To disentangle facial geometry and appearance, we use
image-to-image translation techniques. However, the input
face image contains both geometry and appearance infor-
mation. To address this, we use the rendered face image,
computed by the encoder networks, as the primary driver.
Additionally, we forward random pixel information from
the input face to the generator, similar to [40], to recreate
skin texture and lighting conditions.

The generator models take geometry and random appear-
ance pixels as input, effectively functioning as an image-to-
image translation network or style transfer model. Unlike
traditional rendering approaches that rely on an appearance
model [8, 17, 26, 38], we are not constrained by explicit as-
sumptions, allowing us to adapt the generator models to our
specific requirements.

To train the generator to ignore sEMG electrodes, we
employ an unpaired reference image with a different ex-
pression and a discriminator. This setup has two benefits:
(1) the model learns to ignore pixels describing sEMG elec-
trodes, and (2) the generated faces must be photorealistic to
convince the discriminator, eliminating the need for addi-
tional perceptual losses.

However, this adversarial problem poses challenges,
such as generative models creating incorrect features or hal-
lucinating wrong expressions. We refer the reader to the
main paper for details on regularization terms that address
these issues.

Unlike recent works [21, 40, 53], we use a ResNet [20]
as the backbone architecture for our generator models. Al-
though this differs from the typical Unet architecture, it al-
lows for a similar gradient flow.

We modify the architecture to replace Conv2DTranspose
layers with a single Upsample and Conv2D layer, elimi-
nating the pixelated output and checkerboard patterns in
SMIRK (see visualization in the main paper). This im-
proves the overall quality of the generated images.

We employ instance normalization as the primary activa-
tion function throughout the network [45], which enhances
the reconstruction quality and information flow in the op-
timization problem. However, instance normalization re-
quires a batch size of one to avoid mirroring the behavior of
standard batch normalization [45].

We adopt the multi-phase approach outlined in the main
paper to address this limitation, as parallel-trained models
like EMG2Exp cannot converge with small batch size. This
approach ensures stable training and convergence.

Our ResNet Generator, shown in Figure 2, consists of
9 residual blocks with a feature depth of 64, similar to the

parameter amount of the original UNet in SMIRK [40].

Figure 2. EIFER Generator Architecture: Our EIFER gener-
ator architecture is based on the ResNet [20] backbone, which
serves as the neural generator for restoring faces. We incorpo-
rate skip connections to facilitate information flow, similar to the
U-Net [41, 53] architecture employed in SMIRK [40]. However,
we introduce two modifications: (1) we utilize instance normal-
ization [45] to generate nuanced details, and (2) we replace the
Conv2DTranspose layers with a combination of upsampling and
convolutional layers to eliminate the checkerboard patterns.

A.3. Updated Masking Function
The masking function, originally proposed in [40], selects a
random pixel to represent facial appearance. However, this
function relies on computing facial landmarks in the input
images to define a suitable sampling area. Unfortunately,
this is not feasible under sEMG occlusion, as demonstrated
in Figure 8.

We reformulate the sampling area based on the rendered
FLAME face model to address this limitation. This is made
possible by the sufficient pre-training of the encoder mod-
els, allowing us to tackle this complex problem without re-
quiring a retrained sEMG occlusion-robust facial landmark-
ing model.

As a result, EIFER implicitly becomes a robust facial
landmarking tool under occlusion, as shown in the ablation
studies. We illustrate the information flow of the updated
masking function in Figure 3.

Figure 3. Update Information Flow For the Pixel Masking: As
we cannot rely on the facial landmarks convex hull as a sampling
area, we utilize the monochrome rendered facial geometry instead
for the masking function M(·) [40]. This has the advantage that
we can utilize the learned alignment capabilities of SMIRK [40].
The selected sampling area covers the facial area well.
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A.4. Discriminators
We employ a simple yet effective discriminator model in-
spired by previous works [2, 18, 53], distinguishing be-
tween generated faces and their unpaired reference images.
Specifically, we compare generated faces with removed and
applied sEMG electrodes, ensuring that the generator pro-
duces realistic faces consistent with the input data.

To train the generator, we utilize the least square GAN
loss [33], which encourages the generator to produce more
realistic faces by enforcing generation near the decision
boundary. This loss function helps to stabilize the train-
ing process and improve the overall quality of the gener-
ated faces. Consequently, the problem of distinguishing be-
tween real and fake faces is now reduced to a two-class de-
cision problem. Our discriminator network consists of a
3-layer convolutional neural network with two output neu-
rons, which classify input images as real or fake.

A.5. Multi-Stage Training
We adopt a multi-stage training approach for the two
encoder-generator pairs and the two-phase training proto-
col to overcome the batch size limitation. This approach is
critical due to the challenging nature of our problem, where
facial features are obstructed by electrodes, making expres-
sion extraction difficult.

Inspired by previous works [2, 3], we employ a two-stage
training strategy. In the first stage, we train the entire archi-
tecture with frozen encoders and provide more appearance
pixels to the generator. This allows the model to learn to
disregard the correct facial expression and focus on gener-
ating faces that can fool the discriminators while implicitly
encoding facial geometry in the appearance.

In the subsequent stages, we enforce the disentanglement
of geometry and appearance by (1) enabling the encoder on
sEMG occluded faces to update its weights and (2) grad-
ually reducing the available appearance information. As a
result, the model is forced to rely on the estimated facial
geometry to restore correct faces over time.

Combining this multi-stage approach with the regular-
ization terms introduced in the main paper ensures that the
encoders correctly compute shape, expression, and position.
This approach is crucial for achieving convergence, as it
would otherwise require significantly more training effort.

A.6. EMG2Exp And Exp2EMG Architecture
We utilize simple multi-layer perceptrons (MLPs) to learn
the non-linear relationship between the input data and
the desired output for both our EMG2Exp (Synthesis)
and Exp2EMG (Analysis) networks. These MLPscapture
the complex relationships between the electromyography
(EMG) signals and the corresponding facial expressions and
vice versa. By employing MLPs, we effectively model the
non-linear interactions between the input and output data.

As previously discussed, these models are trained in the
second phase of EIFER, as the first phase requires a batch
size of one. Therefore, we could not guarantee convergence
of the training. By training them separately in the second
phase, we can ensure that they learn the complex relation-
ships between the input and output data effectively.

We provide a detailed illustration of both the EMG2Exp
and the Exp2EMG models in Figure 4. In terms of archi-
tecture, we employ a simple yet effective design, utiliz-
ing ReLU activations [34] for all intermediate layers. This
choice of activation function allows the models to learn non-
linear relationships between the input and output data.

The final layer of each model is designed to accom-
modate the specific requirements of the output data. For
the EMG2Exp model, we use a Tanh activation function,
which allows the model to produce output values in the
range of -1 to 1 (the typical ranges for the 3DMM expres-
sion space), suitable for representing facial expressions. In
contrast, the Exp2EMG model uses a ReLU activation func-
tion in the final layer, as the sEMG signals are non-negative
and require a non-negative output range.

During our experiments, we explored various expression
encoder models, including DECA [14], EMOCAv2 [7], FO-
CUS [26], and Deep3DFace [42]. To accommodate the
unique characteristics of each model, we adapted the input
and output dimensions of our architecture accordingly, tak-
ing into account each model’s specific expression param-
eter dimensions. This allowed us to effectively integrate
these different expression encoder models into our frame-
work and evaluate their performance in our experiments.
Therefore, we compare the expression independently of the
model architecture, gaining more insights into their under-
lying 3DMM and encoder capabilities instead.

Figure 4. EMG2Exp and Exp2EMG Architectures: The sim-
ple MLP architecture learns the non-linear mapping between fa-
cial expression and muscle activity. Thus, the models learn the
correspondence between these two domains.
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B. Dataset - Mimics And Muscles

We created a custom dataset that simultaneously captures
facial mimicry and muscle activity, bridging the gap be-
tween these two aspects. To our knowledge, this is the first
dataset of its kind.

This dataset provides new insights into the complex
dynamics between facial expressions and muscle activity.
We provide a detailed description of the recording setup,
recording scheme, surface electromyography schemes, data
processing, and general data statistics to facilitate a deeper
understanding of the dataset.

B.1. Recording Setup
In our experimental setup, a set of participants was in-
structed by an instruction video [48] to perform different fa-
cial movements. Each movement was repeated three times;
thus, we can compare the repetitions against each other.
Each movement task varied in time, ranging from 10 to 30
seconds. First, the following eleven facial movements were
performed in that order:

1. Face-At-Rest
2. Forehead-Raise
3. Eye-Gentle
4. Eye-Tight
5. Smile-Closed
6. Smile-Open
7. Nose-Wrinkler
8. Cheeks Blow
9. Lip-Pucker

10. Snarl
11. Depress-Lip

Afterward, the participants had to mimic the six basic
emotions [11] four times in total random order. The par-
ticipants were shown faces to recreate. This ensured that no
memory effect of previous repetitions could set in. Each ex-
pression was shown for three seconds, followed by a three-
second interval for repetition. At 4.5 seconds, we assume
the height peak during the expression.

We repeated the experiment twice with sEMG electrodes
attached to measure muscle activity and once without elec-
trodes as a reference. The duplicate sEMG measurement
was conducted to ensure the reliability of the sEMG results.
Additionally, we repeated the entire experiment two weeks
later to account for potential changes in muscle activity and
minimize inaccuracies that may arise from the participants’
daily state. This allowed us to capture a more comprehen-
sive and accurate representation of the participants’ muscle
activity over time.

Our participants were recorded with a frontal-facing
Intel RealSence Depth Camera D415 (Intel Corporation,
Santa Clara, California, U.S.) at 1280 × 720 resolution.
Unfortunately, the obtained 3D information was unreliable

and inaccurate in supporting the monocular 3D facial re-
construction but suitable enough for foreground and back-
ground separation.

We employ the same data collection setup as in [19,
36, 44]. To minimize skin impedance, all participants
thoroughly cleaned their faces with non-refatting medical
soap. The electromyography recording setup used reusable
surface electrodes (Ag–Ag–Cl discs, diameter: 4 mm,
DESS052606, GVB-geliMED, Bad Segeberg, Germany) to
measure muscle activity. Reference electrodes (H93SG,
Kendall, Germany) were bilaterally attached to the mastoid
bone to provide a stable reference point. The muscle signals
were amplified using sEMG amplifiers (ToEM16G, gain
100, frequency range 10–1,861 Hz, DeMeTec, Langgöns,
Germany). Then they converted with an analog to digi-
tal converter (Tom, resolution: 5.96 nV/Bit, sampling rate:
4096/s, cutoff frequency: 2048 Hz, DeMeTec, Langgöns,
Germany). The digitized data were then sampled using ATI-
SArec (GJB Stentechnik, Ilmenau, Germany).

Our experimental setup allowed us to simultaneously
record both the Fridlund [15] and Kuramoto [19, 25, 36]
surface electromyography (sEMG) schemes. However, it
is essential to note that the Kuramoto scheme provides re-
gional information on muscle activity, whereas the Frid-
lund scheme offers more precise activation data. The elec-
trode locations are illustrated in Figure 5, and our medi-
cal partners ensured accurate anatomic placement. A de-
tailed description of the electrode channels is provided in
Table 1, which reveals that some Fridlund electrodes over-
lap with Kuramoto electrodes in specific locations. For a
more comprehensive understanding of the sEMG schemes
and electrode placement, we refer the reader to previous
studies [19, 36, 44].

While our primary focus is on the facial muscles re-
sponsible for expressions, we also recorded the activity of
the M. masseter, a digestive muscle, and the M. tempo-
ralis. The facial muscles have been linked to specific fa-
cial movements through the Facial Action Coding System
(FACS) [12], which is also included in Table 1. Notably,
since we directly recorded facial expressions and muscle
activity, we can bypass the intermediate Action Unit (AU)
proxy variable in our approach. This unique aspect of our
study offers benefits for improving and investigating the es-
tablished FACS, providing new insights into the relationship
between facial muscles and expressions.

B.2. Participant Cohort

We recruited 36 participants (19 ♀, 17 ♂, age range: 18-67
years) without a history of any neurological disease to ob-
tain synchronous facial expression and muscle activity for
this study. We specifically selected beardless male partic-
ipants to ensure the accurate application of surface elec-
tromyography (sEMG) electrodes. Although our sample
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Figure 5. sEMG Electrode Locations: We highlight both surface
electromyography schemes on their corresponding anatomical lo-
cations. Both Fridlund [15] (F, blue) and Kuramoto [25] (K, red)
are attached to both face sides, but drawn here only on one for
clarity. Please note that Fridlund is a bipolar scheme (denoted by
the two smaller dots per electrode), and Kuramoto is monopolar
by using K24 as reference.

size is limited and may not represent an entire population,
we aimed to achieve a balanced distribution of male and fe-
male participants across various age ranges. While the gen-
eralizability of our findings to a broader population remains
uncertain, we expect the results to be consistent within this
cohort, providing a reliable basis for further investigation.

To account for potential occlusions caused by the sur-
face electromyography (sEMG) electrodes on key facial
features, we recorded the same participants without elec-
trode occlusion. This additional recording protocol allowed
us to establish a reference dataset, which serves as a base-
line for evaluating the accuracy of shape and expression re-
construction. By comparing the reconstructed results with
the unoccluded recordings, we can assess the effectiveness

Fridlund Kuramoto Muscle Action Unit Movement

F1, F2 K1, K2 medialer frontalis AU1 inner brow raiser
F3, F4 K3, K4 lateraler frontalis AU2 outer brow raiser
F5, F6, F7, F8 K19 glabellae AU4 brow lowerer

depressor supercilii
corrugator supercilii

F17, F18 K5, K6 orbicularis oculi AU6 cheek raiser
F9, F10 K7, K8 levator labii superioris AU9 nose wrinkler
F9, F10 K7, K8 levator labii superioris AU10 upper lip raiser
F19, F20 - zygomaticus minor AU11 nasolabial deepener
F19, F20 (K15, K16) zygomaticus major AU12 lip corner puller
F13, F14 - depressor anguli oris AU15 lip corner depressor
F15, F16 K9, K10 mentalis AU17 chin raiser
F11, F12 (K20) philtrum, orbicularis oris AU22 lip funneler
F11, F12 (K20) orbicularis oris AU23 lip tightener
F11, F12 (K20) philtrum, orbicularis oris AU24 lip pressor
F21, F22 K17, K18 masseter AU26 jaw drop
F11, F12 - philtrum, orbicularis oris AU28 lip suck
- K13, K14 temporalis - -

Table 1. Electrode Channels and Muscles: With our two sEMG
electrode schemes, we capture the majority of facial muscles.
We also included the according action units [12], providing in-
sights into further research in the future. Please note channel
names surrounded by brackets are just roughly attributable to
the muscles, and K11 and K12 do not exist in the Kuramoto
scheme [19, 25, 36, 44].

of our approach in capturing the nuances of facial expres-
sions despite electrode placement.

B.3. Video Preprocessing

We provide a visualization of the original recording cap-
tured by the Intel RealSense camera, showcasing both RGB
and depth data, in Figure 6 for a representative participant.
To focus the model’s attention on the most relevant facial
regions, we employed the BlazeFace model [1] to compute
the facial bounding box. However, not every frame yielded
a valid bounding box, likely due to minor face orientation
or unaccountable lighting changes. To address this, we in-
terpolated missing bounding boxes using the position from
the previous frame, assuming minimal participant move-
ment due to the attached electrodes hindering a lot of move-
ment. Additionally, Aruco markers placed on the left side
of the frame facilitated synchronization across different data
streams.

Following the extraction of bounding boxes, we lever-
aged rough depth information to segment the face from the
background, thereby mitigating potential influences from
external factors, such as people in the background. Sub-
sequently, we applied a matting estimation technique us-
ing MODNet [22] to refine the segmentation results. Please
note that the cables around the shoulder and neck area still
make this segmentation challenging and might introduce ar-
tifacts. The outcome of this process is illustrated in Fig-
ure 6, also with artifacts above the right shoulder area. In
conjunction with the recorded muscle activity data, these
preprocessed frames were then utilized to train the EIFER
model.
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(a) Raw Input Video of Intel Re-
alSense

(b) Visualize Depth Map of the Intel
RealSense

(c) Estimated Face
Bouding Box via
BlazeFace [1]

(d) Foreground mask-
ing via depth map and
MODNet [22]

(e) Cropped and ex-
tracted face for the
training

Figure 6. Video Preprocessing: We illustrate the preprocessing
steps of the recorded facial videos for EIFER training, where we
remove the background to facilitate facial expression extraction
by the encoder models. Please note that you can see the Aruco
markers on the left side of the raw input frame, which is used for
the synchronization.

B.4. Electromyography Signal Preprocessing

We adhere to established protocols for processing the
recorded electromyography (EMG) signals, as described in
previous studies [16, 19, 36, 44, 50]. Specifically, we focus
on the Fridlund scheme [15] due to its direct association
with the corresponding muscles. As illustrated in Figure 7,
our processing pipeline is uniformly applied to all sEMG
recordings, including those for the M. depressor anguli oris
(F19, F20) during the functional movement of smiling. The
resulting signal exhibits the three repetitions of the move-
ment. Notably, we refrain from normalizing the data during
this preprocessing step, intentionally delaying normaliza-
tion until the training phase to preserve participant-specific
characteristics and avoid loss of information.

Unlike most research that typically operates on high-
resolution sEMG (HR-sEMG) signals at 4096 Hz, we need
to synchronize our signal with the recorded video at 30
frames per second (FPS). We employ a Fast Fourier Trans-
form (FFT)-based downsampling approach [47], carefully
ensuring that the essential frequency features are preserved.
As the example demonstrates, the downsampling operation
effectively maintains the signal’s overall shape and fine-
grained nuances. By successfully recording muscle activ-
ity and facial expression, we can explore the relationship
between these two modalities, enabling a more comprehen-
sive understanding of the underlying mechanisms.

Figure 7. Muscle Signal Preprocessing: Illustration of the data
processing pipeline for a single sEMG measurement of the depres-
sor anguli oris muscle during the ”Smiling” movement. Note the
variability in the linear envelope of the measured muscle activity,
even for repeated instances of the same movement.

B.5. Synchronization

We implemented an automated triggering system that si-
multaneously initiated both data streams to ensure precise
synchronization between the video recording and surface
electromyography (sEMG) signals. Additionally, we incor-
porated visual and sEMG-based synchronization triggers,
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which were repeated twice to guarantee accurate alignment;
see Figure 6 for the Aruco markers. This dual-triggering ap-
proach allowed us to align the video sections with the corre-
sponding sEMG signals confidently. However, despite this
rigorous synchronization protocol, some recordings still ex-
hibited low confidence levels, necessitating their exclusion
from the dataset. To provide transparency and account for
these variations, we report the number of suitable recording
snippets employed during training and evaluation for each
facial movement in Table 2. This information promotes a
more nuanced understanding of the dataset’s composition
and the reliability of our results.

Facial Movement Total Recordings Usable Failed

Face-At-Rest 141 105 36
Forehead-Raise 141 106 35
Eye-Gentle 141 106 35
Eye-Tight 141 106 35
Cheeks-Blow 141 106 35
Smile-Closed 141 105 36
Smile-Open 141 106 35
Nose-Wrinkler 141 107 34
Lip-Pucker 141 106 35
Snarl 141 106 35
Depress-Lip 141 105 36

angry 560 528 32
disgusted 560 528 32
fearful 560 528 32
happy 560 528 32
sad 560 528 32
surprised 560 528 32∑

4911 4332 579

Table 2. Synchronization Results: We show how many record-
ings (at 30 FPS) of the synchronized facial expression and muscle
activity are available for training and evaluation. Please note that
the occlusion-free reference recording can be used fully.

B.6. Limitations
Our dataset is subject to several limitations that warrant con-
sideration. Firstly, the facial expressions mimicked by par-
ticipants may not accurately reflect natural, evoked expres-
sions, as noted in previous studies [7, 11, 35]. However, this
limitation does not compromise our ability to predict mus-
cle activity from expressions and vice versa, as the mea-
sured facial muscle activity and recorded facial expressions
still exhibit a strong correlation. This alignment ensures we
can investigate the relationship between muscle activity and
facial expressions despite the potential differences between
mimicked and natural expressions.

Secondly, the surface electromyography (sEMG) elec-

trodes used in our study introduce significant occlusion,
which poses a challenge for feature extraction as illustrated
in Figure 8. Existing methods are not trained on such data,
and we cannot determine the potential bias these methods
may introduce into our model [4, 5]. This highlights the
need for more robust facial feature extraction to handle oc-
clusions and ensure accurate predictions effectively.

Figure 8. Examples of Occluded Facial Expressions with Pre-
dicted Landmarks: We present several examples of different fa-
cial expressions from three study participants. In addition to the
original images, we overlay the predicted landmarks, as obtained
using the methods described in [1, 29]. Notably, the predicted
landmarks, if at all, exhibit inaccuracies, particularly in the outer
regions of the face. This is of concern, as the outer part of the
face is used to compute the convex hull for the masking function
in SMIRK [40], and the strong offset observed in this region may
impact the accuracy of the masking process.

Further, our recording setup is limited in capturing char-
acteristic comprehensive muscle activity measurements.
Specifically, certain muscle activities, such as the voluntary
evoked eyelid closure, are controlled by the palpebral part
of the M. orbicularis oculi, are not accounted for in the Frid-
lund scheme [15]. This omission is because the Fridlund
scheme focuses on a specific set of facial muscles and the
palpebral part of the M. orbicularis oculi is not included in
this set. Additional measurements or specialized electrodes
would be required to capture this activity, as discussed in
previous studies [43]. This limitation highlights the need for
more research concerning recording setups that can capture
a broader range of muscle activities, enabling a more com-
plete understanding of the complex relationships between
facial muscles and expressions [16].

Our dataset has limitations, including its size and focus
on functional movements, which may restrict the general-
izability of our findings and the model’s effectiveness in
handling complex movements or subtle variations in facial
expressions. Additionally, the impact of extreme facial ex-
pressions or diseases like facial palsy on our approach is
unclear and warrants further investigation.

Our dataset was recorded within a medical study in Ger-
many, subject to strict data privacy regulations. As a re-
sult, we are limited in the number of faces we can display
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and the participants who agreed to share their data for new
research databases. However, we will publish our trained
models, EMG2Exp and Exp2EMG, which do not contain
person-identifiable information, ensuring compliance with
data protection regulations [10].

C. Experimental Setup
We compare EIFER to several state-of-the-art monocu-
lar 3D face reconstruction methods. Our comparison in-
cludes three models that employ the FLAME 3DMM [28]:
DECA [14], EMOCAv2 [7], and SMIRK [40]. We also
evaluate two models that use the BaselFaceModel [17, 38]:
Deep3DFace [42] and FOCUS [26]. Additionally, we com-
pare MC-CycleGAN [2, 3], which does not rely on a face
model and implicitly learns the reconstruction. All models
are available as PyTorch [37] implementations.

However, none of these methods were trained or tested
on faces with sEMG electrodes attached. Moreover, our 36
participants were not part of their training data, making their
faces completely unseen.

To ensure a fair comparison, we fine-tune all models
on a common subset of occlusion-free reference recordings
(10% of available frames). This approach has two bene-
fits: First, it adapts the models to our data without occlu-
sion, eliminating the need to account for their in-the-wild
performance. Therefore, we assume they will perform best.
Second, when applying the models to the sEMG-occluded
faces of the same individuals, any behavior change can be
attributed to the electrodes. This allows us to assess the
models’ invariance to this type of occlusion.

In contrast, EIFER trains on the same subset of
occlusion-free faces (and uses the occluded faces, also 10%
of available frames) as a reference to guide the reconstruc-
tion via adversarial challenge. As a result, all models have
seen the same occlusion-free faces, making the comparison
on the remaining 90% of frames fair.

We report the training hyperparameters for the first phase
of EIFER, which focuses on expression reconstruction un-
der sEMG occlusion.

We employ two AdamW [30] optimizers to train the
encoder-generator pairs and discriminators independently.
Both optimizers use a learning rate of 2 · 10−4 and a weight
decay of 10−3. A cosine annealing learning rate scheduler
adapts the learning rate during training. Again, we can only
employ a batch size of one to facilitate the strength of in-
stance normalization.

EIFER is trained for 20 epochs, divided into three stages:
10 epochs for the first, 5 for the second, and 5 for the last.
We use 80% of the 10% available frames for training and
20% for validation. Note that the reported results in the
main paper are on the 90% unseen frames.

During training, EIFER receives the triplet (IN, IS),
where IN ∈ R224×224×3 is a color image of the occlusion-

free face and IS ∈ R224×224×3 is a color image of the
sEMG-occluded face. We apply random data augmenta-
tions to the frames, including random cropping, sharpening,
and horizontal and vertical flipping.

During the second phase of EIFER, we train EMG2Exp
and Exp2EMG using the following hyperparameters. We
employ the Adam optimizer [24] with a learning rate of
10−3 and no additional learning rate scheduling or early-
stopping. We use a batch size of 512 and train for 200
epochs. All results in the main paper are reported on a five-
fold cross-validation.

Both models are trained on the tuple (A,φ), where
A ∈ R22 represents the 22 measured muscle signals us-
ing the Fridlund sEMG scheme. We normalize the muscle
signals A by the maximum measured muscle activity for
each participant. This normalization accounts for individ-
ual intensity and muscle strength differences, allowing for a
more comparable analysis across participants. Please note
that this maximum value has been used to restore the re-
constructed activity during the Exp2EMG predictions. φ
denotes the 3DMM expression space parameters. The di-
mension of φ varies across models:
• For EIFER and SMIRK [40], φ ∈ R55 (50 expressions,

two eyelids, three jaw).
• For DECA [14] and EMOCAv2 [7], φ ∈ R53 (50 expres-

sion parameters and three jaw).
• For FOCUS, φ ∈ R100.
• For Deep3DFace, φ ∈ R64.
Please note that FLAME [28] models the jaw movement
intentionally separate, and BFM [17, 38] models this im-
plicitly via the expression space. This allows us to compare
the expression space differences between FLAME [28] and
BaselFaceModel [17, 38].

D. Visualizations And Videos

We provide additional visual examples for each main ex-
periment, including videos to highlight our approach’s dy-
namic aspects and highlight our methods’ advantages.

D.1. Isolated Shape Visualization

In our experiments, we observed that the same individual
was reconstructed with varying facial geometries. To in-
vestigate this, we analyzed the shape parameters of both
FLAME [28] and BFM [17, 38] under neutral expressions,
excluding camera or pose parameters. Notably, EMO-
CAv2 [7] employs the same encoder as DECA [14], result-
ing in identical shape parameter estimates. Our analysis re-
vealed that all models, except EIFER, exhibited differences
in geometry for the same individual. This discrepancy may
explain why the expression parameters, compensating for
the visual reconstruction, potentially affect the quality of
muscle activation predictions in our later experiments.
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Figure 9. Isolated shape parameters of the facial reconstruction.
Many models have slightly different shape geometries for the same
individual, indicating that the encoder might use the expression
space to substitute the reconstruction.

D.2. Reconstruction

We provide additional visual examples for facial geometry
extraction and appearance reconstruction. We also demon-
strate the reconstruction using only expression parameters
on a neutral face to evaluate the encoder’s disentanglement
ability during sEMG occlusion. Examples include Face-
At-Rest, Eye-Tight, Smile-Open, Snarl, and Nose-Wrinkler.
These are the following figures:

• Face-At-Rest: 3D Geometry Figure 10
• Face-At-Rest: Isolated Expression Figure 11
• Face-At-Rest: Appearance Reconstruction Figure 12
• Eye-Tight: 3D Geometry Figure 13
• Eye-Tight: Isolated Expression Figure 14
• Eye-Tight: Appearance Reconstruction Figure 15
• Smile-Open: 3D Geometry Figure 16
• Smile-Open: Isolated Expression Figure 17
• Smile-Open: Appearance Reconstruction Figure 18
• Snarl: 3D Geometry Figure 19
• Snarl: Isolated Expression Figure 20
• Snarl: Appearance Reconstruction Figure 21
• Nose-Wrinkler: 3D Geometry Figure 22
• Nose-Wrinkler: Isolated Expression Figure 23
• Nose-Wrinkler: Appearance Reconstruction Figure 24

D.3. EMG2Exp
We provide additional visual examples of synthesized facial
expressions based on muscle activity for all methods, in-
cluding the six base emotions and eleven functional move-
ments for more participants, as shown in Figure 25. We also
compare the results using MC-CycleGAN [2, 3] restored
recordings for a fair comparison.

Our method directly generates highly realistic faces from
occluded faces, whereas other methods require occlusion-
free faces. This demonstrates the robustness of EIFER
in handling sEMG occlusion. However, SMIRK [40] is
the only method to reconstruct the Depress-Lip movement,
demonstrating its ability to encode rare and subtle facial ex-
pressions. In contrast, EIFER could not learn this move-
ment, even under occlusion, highlighting a potential area
for improvement.

We observe an interesting phenomenon where the model
can synthesize the Eye-Tight movement but not the Eye-
Gentle movement. This suggests that the model can pick up
on different muscular patterns depending on the strength of
the same movement. However, it remains unclear whether
the differences between voluntary and enforced movements
exhibit similar patterns. Notably, EIFER is the only method
that can restore the Lip-Pucker movement.

We also observe that the jaw movement is challenging
to learn, as the M. massester muscle is only slightly active
during jaw opening. Although this task is easy to solve
visually, the muscle activity appears insufficient. Further-
more, we find that the performance of the two 3DMMs
(FLAME [28] and BaselFaceModel [17, 38]) depends on
the encoder model. This suggests that a well-trained en-
coder model is more important than the capabilities of the
3DMM expression space.

This finding highlights the importance of disentangle-
ment of shape and expression in 3DMMs, as well as the
significance of the encoder model [9, 10]. Although this
task remains ill-posed, our results have implications for new
research directions in medicine and psychology.

D.4. Exp2EMG
We provide additional examples of EIFER’s muscle activity
prediction beyond the single active and inactive muscle vi-
sualized in the main paper for the happy expression. These
can be found in Figure 26, Figure 27, and Figure 28. Cer-
tain muscles are typically active during specific facial ex-
pressions, while others remain inactive. However, we also
notice decreased activity in some muscles, accompanied by
activation in others. This phenomenon, which is not well-
studied [19], suggests that facial muscles may be more in-
terconnected than currently assumed [11, 12], warranting
further investigation.

EIFER can accurately predict the muscle activity en-
velope without requiring additional personal information
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However, we refine the prediction by multiplying it by the
participant’s maximum observed activity (in µV ), allow-
ing us to estimate the relative activity and actual muscle
strength. Even without this refinement, EIFER remains a
powerful tool for predicting muscle activity.

We observe that EIFER accurately fits the shape of the
original signal in all reconstructions but occasionally strug-
gles to estimate the signal amplitude correctly. We at-
tribute this to the per-participant normalization during train-
ing, which may cause the model to underestimate the gen-
eral signal amplitude if participants require varying levels
of muscle activity to evoke changes in facial mimicry.

Several potential reasons for this phenomenon deserve
further exploration:
1. Are there differences in voluntary and evoked expression

patterns?
2. Do participants exhibit unique muscle activity patterns

for certain expressions due to pathological conditions?
3. Are there learning effects between sessions, such as

changes in reaction time, execution speed, or intensity?
To drive progress in understanding and addressing these

open questions, we are releasing our models EMG2Exp and
Exp2EMG to the research community, inviting collabora-
tion and exploration to uncover the underlying causes of
these phenomena and push the boundaries of facial expres-
sion analysis.

10



Figure 10. Facial Geometry Reconstruction during Face-At-Rest

Figure 11. Isolated Facial Expression Reconstruction during Face-At-Rest
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Figure 12. Facial Geometry Reconstruction during Face-At-Rest

Figure 13. Facial Geometry Reconstruction during Eye-Tight
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Figure 14. Isolated Facial Expression Reconstruction during Eye-Tight

Figure 15. Facial Geometry Reconstruction during Eye-Tight
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Figure 16. Facial Geometry Reconstruction during Smile-Open

Figure 17. Isolated Facial Expression Reconstruction during Smile-Open
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Figure 18. Facial Geometrie Reconstruction during Smile-Open

Figure 19. Facial Geometry Reconstruction during Snarl
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Figure 20. Isolated Facial Expression Reconstruction during Snarl

Figure 21. Facial Geometry Reconstruction during Snarl
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Figure 22. Facial Geometry Reconstruction during Nose-Wrinkler

Figure 23. Isolated Facial Expression Reconstruction during Nose-Wrinkler

17



Figure 24. Facial Geometry Reconstruction during Nose-Wrinkler
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Figure 25. Physiological-based Expression Synthesis via Muscle Activity: We demonstrate synthesized facial expressions from recorded
muscle activity. State-of-the-art methods, such as SMIRK and FOCUS, struggle to reconstruct expressions under sEMG occlusion. We see
improved results on the MC-CycleGAN [2, 3] restored faces, but only SMIRK performs well across all emotions. In contrast, our method,
EIFER, achieves comparable synthesis quality directly from occluded images without needing electrode removal.
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Figure 26. Muscle Activity via Expression Parameters We demonstrate the reconstruction of muscle activity from expression parameters,
achieving fair results with minor amplitude signal issues. We visualize this capability for the six base emotions [11].
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Figure 27. Muscle Activity via Expression Parameters We demonstrate the reconstruction of muscle activity from expression parameters,
achieving fair results with minor amplitude signal issues. We visualize this capability for the six different functional movements [48].
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Figure 28. Muscle Activity via Expression Parameters We demonstrate the reconstruction of muscle activity from expression parameters,
achieving fair results with minor amplitude signal issues. We visualize this capability for the remaining five functional movements [48].
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Figure 29. Topological EMG Heatmaps: We compare the topological heat maps during the peak muscle measurement of muscle activity
for each movement. Further, we display the predicted muscle activity based on each method. SI units are committed for clarity but can be
taken from the other muscle activity prediction figures (Figure 26, Figure 27, Figure 28).
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E. Ablation Studies
In addition to the results presented in the main paper, we
conduct further ablation studies to explore alternative appli-
cations of EIFER. We investigate various downstream tasks
to assess the model’s versatility and potential uses beyond
its original purpose.

E.1. Convolutional Based Expression Classification
We leverage the six base emotions [11] mimicked by our
participants as reference annotations, serving as ground
truth labels for image-based classification. This way, we
evaluate whether the appearance reconstruction accurately
resembles the target facial expression, providing an addi-
tional objective criterion for assessing appearance quality.

We employ several convolution-based Facial Expres-
sion Recognition (FER) classifiers: Poster++ [32], Resid-
ualMaskingNet [31], EmoNext [13], and Segmentation-
VGG [46]. All required preprocessing steps are strongly
followed, as outlined in the paper and corresponding code
repositories. While this model selection is not exhaustive,
it gives a broad overview of existing classifiers trained on
public datasets. However, since we cannot directly assess
the accuracy of the mimicked expression, we establish two
baselines: (1) an upper baseline using occlusion-free ref-
erence recordings, and (2) a lower threshold using sEMG-
occluded recordings. Any model should perform better than
the lower baseline.

We present the results in Table 3 to Table 6. Notably,
none of the reconstruction methods achieve the original up-
per limit on the occlusion-free videos. This discrepancy
may be attributed to several factors: First, the methods may
struggle with frames that differ from the training database’s
image quality and recording style, simulating a distribution
shift or in-the-wild application scenario. Second, the ap-
pearance reconstruction may introduce biases invisible to
the human eye but affect the models’ performance [4, 5].
Lastly, the reconstruction may not retain the essential facial
features that the models rely on, indicating potential infor-
mation loss during the reconstruction. While the underly-
ing cause is beyond the scope of this study, it is an essential
area of research that can help uncover the black-box nature
of FER classification models.

E.2. Landmarks under Occlusions
We demonstrate in Figure 8 that existing landmarking mod-
els struggle to predict landmarks accurately under sEMG
occlusion. However, EIFER, trained without landmark in-
formation, still aligns well with the facial geometry. We
leverage this alignment to predict landmarks, as defined
on the FLAME model [14, 28, 40]. Although we lack
groundtruth annotations for the landmarks, visual inspec-
tion reveals that EIFER’s predictions outperform those of
existing models [1, 29], as shown in Figure 30. While

Angry Disgusted Fearful Happy Sad Surprised Average

Upper Limit (N) 65.97 82.29 53.12 94.08 75.00 70.49 73.49
Lower Limit (S) 14.02 15.91 46.02 54.92 84.47 60.04 45.90

DECA 7.01 0.00 0.00 0.00 0.00 21.97 4.83
EMOCAv2 61.45 3.39 79.89 2.82 8.94 6.15 27.11
SMIRK 31.44 4.92 22.73 56.06 81.06 53.03 41.54
Deep3DFace 0.25 1.50 5.46 32.17 16.42 89.58 24.23
FOCUS 0.26 0.00 0.00 1.56 0.00 92.23 15.67
MCGAN 47.97 75.61 33.94 75.61 73.17 58.94 60.87

EIFER 48.67 61.55 27.84 71.78 67.23 56.44 55.59

Table 3. Emotion Classification Accuracy for Poster++[32]: We
report the FER image-based classification results for the appear-
ance reconstructions.

Angry Disgusted Fearful Happy Sad Surprised Average

Upper Limit (N) 56.60 72.57 36.81 84.67 8.33 57.29 52.71
Lower Limit (S) 13.64 0.00 2.65 25.19 0.00 81.82 20.55

DECA 0.19 0.00 82.01 0.57 0.00 0.00 13.79
EMOCAv2 2.23 7.91 4.47 3.95 1.12 1.12 3.47
SMIRK 16.10 4.73 5.68 7.77 0.57 68.37 17.20
Deep3DFace 4.96 15.54 3.97 60.60 2.24 68.98 26.05
FOCUS 2.07 1.31 40.57 18.44 0.26 47.15 18.30
MCGAN 45.12 64.43 21.14 52.85 2.64 39.63 37.64

EIFER 48.67 62.69 14.20 55.11 3.22 39.39 37.22

Table 4. Emotion Classification Accuracy for
ResidualMaskingNet[31]: We report the FER image-based
classification results for the appearance reconstructions.

Angry Disgusted Fearful Happy Sad Surprised Average

Upper Limit (N) 48.96 0.00 14.24 97.21 21.88 69.44 41.95
Lower Limit (S) 19.32 0.00 30.68 61.93 31.82 34.28 29.67

DECA 0.00 0.00 0.00 0.19 11.74 5.11 2.84
EMOCAv2 60.89 0.00 16.20 6.21 51.40 48.04 30.46
SMIRK 70.27 0.00 17.42 60.61 13.83 9.28 28.57
Deep3DFace 1.24 0.00 3.97 65.34 4.23 66.75 23.59
FOCUS 0.00 0.00 0.00 20.52 0.26 35.49 9.38
MCGAN 21.54 0.00 5.89 90.24 8.94 43.70 28.39

EIFER 48.11 0.00 2.65 94.70 8.52 35.80 31.63

Table 5. Emotion Classification Accuracy for
EmoNextBase[13]: We report the FER image-based classi-
fication results for the appearance reconstructions. Please note
that the model has never predicted disgust for any image.

Angry Disgusted Fearful Happy Sad Surprised Average

Upper Limit (N) 21.53 0.00 11.46 78.75 69.10 1.74 30.43
Lower Limit (S) 16.86 0.00 5.49 71.97 22.35 0.19 19.48

DECA 0.19 0.00 0.19 0.38 5.30 3.98 1.67
EMOCAv2 63.69 0.00 10.06 18.08 31.28 52.51 29.27
SMIRK 38.83 0.00 2.65 45.45 24.81 25.57 22.89
Deep3DFace 0.99 0.00 1.99 40.40 20.65 48.14 18.69
FOCUS 1.81 0.00 0.52 31.43 1.30 40.93 12.67
MCGAN 51.42 0.00 2.85 69.11 14.84 12.20 25.07

EIFER 61.74 0.00 1.70 72.54 10.04 15.72 26.96

Table 6. Emotion Classification Accuracy for
SegmentationVGG19[46]: We report the FER image-based
classification results for the appearance reconstructions. While
SegmentationVGG19 performs well on the benchmark datasets,
the application to our unseen data results in strong performance
degradation.
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EIFER shows improved alignment, there is still room for
improvement.

Figure 30. Landmark Prediction under sEMG occlusion: We
see that EIFER can be used to predict the 2D facial landmarks
under occlusion, whereas existing methods [23, 29] produce inac-
curate predictions.

F. Extended Limitations Discussion

Facial Action Coding System: EIFER presents a novel
data-driven approach for estimating muscle signals from fa-
cial expressions using electromyography. Comparing this
paradigm to traditional methods, such as the Facial Action
Coding System (FACS) [12], is an open research direction
that we leave for future work. Existing FACS regression
methods do work on our occluded images. Instead, we rely
on MC-CycleGAN recordings [2, 3] to make a fair com-
parison. However, as shown in Section E.1, the appearance

reconstructions of these models differ from occlusion-free
reference recordings. Further research is necessary to en-
sure the suitability of our dataset for a comprehensive com-
parison study.
Generalization: Our results’ generalizability is uncertain
due to the limited sample size (N = 36). Additionally,
our cohort is based in Germany, which may introduce cul-
tural biases that could impact the results when applied to
other populations. We tested a wide range of standardized
facial expressions [11, 48], but participants did not perform
them voluntarily. This may affect the generalizability of
spontaneous facial expressions, which might exhibit differ-
ent muscle activity patterns. However, our results still cap-
tured facial mimicry and muscle activity, suggesting that the
learned correspondence remains valid. Our study only in-
cludes healthy participants without pre-existing neurologi-
cal diseases affecting the facial nerve. Therefore, conditions
like facial palsy or Parkinson’s disease may impact the pre-
dictions. EIFER may not address facial asymmetry typical
in facial palsy, as it may have learned a symmetry bias from
our data [4, 5]. Furthermore, our models might not recover
synkinetic effects (involuntary movements on the contralat-
eral face side). To address this, we currently record patients
with unilateral synkinetic chronic facial palsy to validate
our approach for medical use cases.
Data Availability: Our dataset was recorded in Germany
as part of a medical study, subject to strict data privacy reg-
ulations. Due to these regulations, we are restricted in shar-
ing participant data and faces. However, we will release
our trained models, EMG2Exp and Exp2EMG, which do
not contain person-identifiable information, ensuring com-
pliance with data protection regulations [10].
Disentanglement: Our approach relies on the disentan-
glement of shape and expression in 3D Morphable Mod-
els (3DMMs), specifically FLAME [28] and BaselFace-
Model [17, 38], as well as the face encoder’s ability to es-
tablish this correspondence [10, 49]. The behavior of other
3DMMs, such as FaceScapes [51, 52], ICT-FaceKIT [27],
or FaceWarehouse [6], is unclear and requires further inves-
tigation. A necessary condition for exploring these mod-
els is the availability of well-pre-trained encoder models.
Without these, the correspondence between facial expres-
sions and muscle activity might not be learnable.
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[Sup2] Tim Büchner, Orlando Guntinas-Lichius, and Joachim
Denzler. Improved obstructed facial feature reconstruc-
tion for emotion recognition with minimal change cycle-
gans. In International Conference on Advanced Concepts
for Intelligent Vision Systems, pages 262–274. Springer,
2023.
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