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Abstract

This document complements our main paper with the fol-
lowing additional contributions:
• derivation of results,
• additional quantitative experiments,
• qualitative comparisons.

A. Derivations
Proposition A.1. τ(x)x is the point of maxiumum density
along ray x ∈ R3 \ {0} for a Gaussian distribution with
parameters (µ, Σ).

Proof. Let αx parametrize all points along ray x. The point
of maximum density for the given 3D Gaussian is obtained
by solving

min
α

f(α) := (αx− µ)⊤Σ
−1
(αx− µ) .

Since the problem is convex, we find the solution by simply
setting to zero the derivative of f , yielding

α⋆ := τ(x) ,

where τ is defined as per Sec. 3.2. It follows that α⋆x =
τ(x)x is the point of maximum density along the ray as
required.

Proposition A.2. If c2 ≤ κ holds for a given Gaussian
primitive, then its support spans the whole image.

Proof. By plugging Eq. (5) into the support condi-
tion Eq. (3), unfolding the definition of τ(x), and after sim-
ple algebraic manipulations, we end up with the following
relation:

(µ⊤Σ−1x)2

x⊤Σ−1x
≥ 0 ≥ c2 − κ , (1)

which holds for any x ∈ R3 \ {0}, or in other terms all
possible camera rays.

Proposition A.3. If c2 > κ holds for a given Gaussian
primitive, then τ(x) ̸= 0 for all x ∈ R3 \ {0}.

Proof. Following a derivation similar to Prop. A.2, we ar-
rive at the following relation

τ(x)(µ⊤Σ
−1
x) ≥ c2 − κ > 0 .

Since the condition c2 > κ implies that µ ̸= 0, and also
x ̸= 0, it follows that µ⊤Σ−1x ̸= 0. Hence, necessarily
τ(x) ̸= 0 for all x ∈ R3 \ {0}.

Proposition A.4. τ(e) = 1 for all e ∈ E assuming c2 > κ.

Proof. Given e ∈ E we have by definition of E that e =
τ(x)x holds for some x ∈ R3 \{0}. By Prop. A.3, τ(x) ̸=
0 assuming c2 > κ, which implies that e ̸= 0. Then, we can
write x = αe by setting α = τ(x)−1 and, therefore, e =
τ(x)x = τ(αe)αe = τ(e)e, the last equality following
by unfolding the definition of τ . Accordingly, τ(e) = 1
necessarily holds.

Proposition A.5. For any e ∈ E , the following holds:

e⊤Σ
−1
e = e⊤Σ

−1
µ = c2 − κ

provided that c2 > κ.

Proof. By Prop. A.4, we have that τ(e) = 1 holds for
any e ∈ E . By definition of τ it follows that e⊤Σ−1e =
e⊤Σ−1µ. This together with the constraint Dray(e;µ, Σ) =
(e−µ)⊤Σ−1(e−µ) = κ from E yields the required relation
by simple algebraic manipulations.

A.1. Derivation of Rµ̂←v

We define the rotation matrix aligning v to µ̂ as follows

Rµ̂←v :=

{
Rµ̂,v if µ̂⊤v ≥ 0

Rµ̂,−vP else

where P :=

−1
1

−1

. Here, we use the formula

Rx,y := 2 (x+y)(x+y)⊤

(x+y)⊤(x+y)
− I, which yields a rotation ma-

trix aligning 3D vector y to x. This is a special case of
the Rodriguez rotation formula that we obtain considering



a 180◦ rotation around the axis x + y. Since our goal is
to align v to µ̂, Rµ̂,v could already serve that purpose. Un-
fortunately, Rµ̂,v is not defined when µ̂ = −v. For this
reason, we distinguish two cases: If µ̂⊤v ≥ 0, then Ro-
driguez rotation formula yields a valid solution, so we re-
turn Rµ̂,v . Otherwise, we first rotate the space 180◦ around[
0 1 0

]
with matrix P, so that v points in the opposite

direction, and then apply Rµ̂,−v to align −v to µ̂. Indeed,
Rµ̂,−vPv = Rµ̂,−v(−v) = µ̂.

A.2. Derivation of Eq. (14)

We start simplifying the objective in Eq. (13):

∥Φ−1(u)− Φ−1(0)∥2

(a)
∝ ∥Q[H(au)−H(a0)]∥2

(b)
∝ ∥Q0:2u∥2

(c)
= u⊤Q⊤:,0:2Q:,0:2u = u⊤Bu .

Here, in (a) we unfold the definition of Φ−1 as per main
paper, neglect multiplicative factors not depending on u
and refactor terms; (b) follows from the fact that H(z) −
H(z′) yields a 3D vector with a null z-coordinate for any
{z, z′} ⊂ R2, so Q(H(z) − H(z′)) = Q:,0:2(z − z′). In
addition, we neglected again multiplicative factors not de-
pending on u. Finally, (c) follows from unfolding the norm
and noting that the resulting matrix of quadratic coefficients
coincides with B as per main paper.

A.3. Derivation of Eq. (15)

According to the description preceding Eq. (15), we have
that Vray := c2

c2−κΦ
−1(UrayO), where we assume that Φ−1 is

applied column-wise to the input matrix. This can then be
rewritten as follow:

Vray
(a)
= cQH(aUrayO)

(b)
= cQH

(
1

c
UrayZray

)
(c)
= c

[
1

c
Q0:2UrayZray + RpSRµ̂←vv1

⊤
]

(d)
= c

[
1

c
Q0:2UrayZray + RpSµ̂1

⊤
]

(e)
= Q0:2UrayZray + µ1⊤

(f)
= TrayH (Zray) .

Here, (a) follows by unfolding the definition of Φ−1

and simplifying the scalar factors; (b) is obtained by us-
ing the relation aO = 1

cZray with Zray defined as per main
paper; (c) follows from the fact that we can write AH(X) =

A
[
X⊤ 0

]⊤
+Av1⊤ = A0:2X+Av1⊤, where 1 is a vector of

ones, and Q := RpSRµ̂←v as per definition in Eq. (12); (d)
applies the relation Rµ̂←vv = µ̂; (e) results from unfold-
ing the definition of µ̂ as per main paper and simplifying
matrix/scalar multiplications; (f) follows from the relation
AX + y1⊤ =

[
A y

]
H(X) and from the definition of Tray

as per main paper.

A.4. Derivation of RayGS’s fragment shader
We show how we derived the formula used in the fragment
shader starting from Eq. (5), where x := Vrayα for a given
interpolating coefficient vector α (i.e. nonnegative and sum-
ming up to 1):

Dray(x;µ, Σ) = (τ(x)x− µ)⊤Σ
−1
(τ(x)x− µ)

(a)
= c2 + τ(x)2x⊤Σ

−1
x− 2τ(x)x⊤Σ

−1
µ

(b)
= c2 − (x⊤Σ−1µ)2

x⊤Σ−1x

(c)
= c2 −

(x⊤RpS
−2R⊤p µ)

2

∥S−1R⊤p x∥2

(d)
= c2

(
1− (x⊤RpS

−1µ̂)2

∥S−1R⊤p x∥2

)
(e)
= c2

[
1−

(
α⊤V⊤rayRpS

−1µ̂
)2

∥S−1R⊤p Vrayα∥2

]

(f)
= c2

1−
(
H

(
1
cUrayZrayα

)⊤
Q⊤RpS

−1µ̂
)2

∥S−1R⊤p QH
(
1
cUrayZrayα

)
∥2


(g)
= c2

1−
(
H

(
1
cUrayZrayα

)⊤
Rµ̂→vµ̂

)2

∥Rµ̂→vH
(
1
cUrayZrayα

)
∥2


(h)
= c2

1−
(
H

(
1
cUrayZrayα

)⊤
v
)2

∥H
(
1
cUrayZrayα

)
∥2


(i)
= c2

[
1− 1

1 + c−2∥Zrayα∥2

]
(j)
=

[
c−2 + ∥Zrayα∥−2

]−1

.

Here, (a) follows by simple algebraic manipulations and by
considering c :=

√
µ⊤Σ−1µ as per main paper; (b) fol-

lows by unfolding the definition of τ as per main paper and
by simple algebraic manipulations; (c) follows by unfold-
ing Σ−1 := RpS

−2Rp and rewriting the denominator into a
squared norm; (d) follows by substituting S−1R⊤p µ = cµ̂,
where µ̂ is as per main paper, and factorizing; (e) follows by
unfolding the definition of x provided above; (f) follows by
unfolding Vray using the relation (b) in Appendix A.3, using
the identity H(Zray)α = H(Zrayα), and simplifying scalar
factors; (g) follows by unfolding the definition of Q as per



main paper and simplifying matrix multiplications; (h) fol-
lows by noting that the norm of a rotated vector yields the
norm of the vector and that Rµ̂→vµ̂ = v; (i) follows by from
the identities H(z)⊤v = 1 and ∥H(xz)∥2 = 1 + x2∥z∥2,
and that the norm is invariant to rotations of the argument.
Finally, (j) follows by rearranging and simplifying terms.

A.5. Derivation of PMIP(x) in Sec. 5
We start by approximating the 3D-2D projection operator
π(x) to the first-order around x0, yielding

π̂(x) := π(x0) + Jπ(x0)(x− x0) .

Assuming x ∼ N (µ, Σ), we have that u := π̂(x) ∼
N (π̂(µ), JΣJ⊤), where J := Jπ(x0). For each (unit) cam-
era ray x, we take x0 := τ(x)x, where τ is as per main
paper, and define a 2D Gaussian distribution N (π(x0), σ

2
x).

The density of rays x is then determined by the expectation
of N (u;π(µ), JΣJ⊤) with u ∼ N (π(x0), σ

2
xI), which

yields

PMIP(x) :=

∫
R2

N (u;π(µ), JΣJ⊤)N (u;π(x0), σ
2
xI)du

= N (π(x0);π(µ), JΣJ
⊤ + σ2

dI) .

We consider a projection operator that varies with the
viewing ray x. Specifically, we project 3D points to the
spherical tangent space Tx ⊂ R3 of x by leveraging the
logarithmic map. The 3D tangent vector can be mapped
to 2D points on the tangent plane by leveraging any local
coordinate frame expressed as unitary, orthogonal columns
of Fx ∈ R3×2, which satisfies F⊤x Fx = I and F⊤xx = 0.
This yields the following projection operator:

πx(z) := F⊤x Logx

(
z

∥z∥

)
.

Then, πx(x0) = 0 and the Jacobian Jx := Jπx(x0) of this

projection operator evaluated at x0 is given by Jx =
F⊤x
τ(x) .

It follows that

π̂x(z) =
1

τ(x)
F⊤xz ,

which yields the following projected and smoothed 2D
Gaussian distribution

PMIP(x) = N
(
0; F⊤xµ; F

⊤
x ΣFx + (τ(x)σx)

2I
)
τ(x)2

= N
(
0; F⊤xµ; F

⊤
x

[
Σ+ (τ(x)σx)

2I
]
Fx

)
τ(x)2

:= N
(
0; F⊤xµ; F

⊤
x Σ̂xFx

)
τ(x)2 ,

where we set Σ̂x := Σ+(τ(x)σx)
2I. To evaluate the Gaus-

sian distribution on a given view and ray x we need to com-
pute µ⊤Fx(F

⊤
x Σ̂xFx)

−1F⊤xµ and det(F⊤x Σ̂xFx). In order to

get rid of the dependency on Fx we can rewrite those ex-
pressions as follows:

µ⊤Fx(F
⊤
x Σ̂xFx)

−1F⊤xµ

(a)
= µ⊤FxF

⊤
x

[
Σ̂−1x − Σ̂−1x xx⊤Σ̂−1x

x⊤Σ̂−1x x

]
FxF

⊤
xµ

(b)
= µ⊤(I− xx⊤)

[
Σ̂−1x − Σ̂−1x xx⊤Σ̂−1x

x⊤Σ̂−1x x

]
(I− xx⊤)µ

(c)
= µ⊤

[
Σ̂−1x − Σ̂−1x xx⊤Σ̂−1x

x⊤Σ̂−1x x

]
µ

(d)
= (µ− τ̂(x)x)⊤Σ̂−1x (µ− τ̂(x)x) = Dray(x;µ, Σ̂x) ,

where τ̂(x) :=
µ⊤Σ̂−1

x x

x⊤Σ̂−1
x x

, and

det(F⊤x Σ̂xFx)
(a)
= det(Σ̂x)x

⊤Σ̂−1x x .

Equalities (a) follow from Prop. A.6 by taking X := W⊤Σ̂W,
where W = [Fx,x], and considering A := F⊤x Σ̂xFx. Since
W is unitary, we have that X−1 = W⊤Σ̂−1x W and det(X) =
det(Σ̂x). It follows that D = F⊤x Σ̂

−1
x Fx, e = F⊤x Σ̂

−1
x x and

f = x⊤Σ̂−1x x. Moreover we have that b = F⊤x Σ̂xx and
c = x⊤Σ̂xx. Equality (b) follows by noting that columns
of W are eigenvectors of I−xx⊤ with eigenvalues given by
[1, 1, 0] and therefore I− xx⊤ = FxF

⊤
x . Finally, equalities

(c) and (d) follow by simple algebraic manipulations.
The final form of PMIP(x), up to constant multiplicative

factors, is given by

PMIP(x) ∝
τ(x)2√

det(Σ̂x)x⊤Σ̂
−1
x x

exp

(
−1

2
Dray(x;µ, Σ̂x)

)
.

A.6. Useful results
Proposition A.6. Assume

X :=

[
A b

b⊤ c

]
and X−1 :=

[
D e
e⊤ f

]
.

Then A−1 = D− ee⊤

f and det(A) = det(X)

c−b⊤A−1b
.

Proof. Since XX−1 = I we have that AD + be⊤ = I and
therefore D = A−1−A−1be⊤. We have also that Ae+bf =
0 and therefore e/f = −A−1b. Hence by substituting we
have D = A−1 + ee⊤/f , from which the result about the
inverse of A follows.

By properties of the determinant we have that det(X) =
det(A)(c−b⊤A−1b), from which the result about the deter-
minant of A trivially follows.

B. Additional quantitative experiments
B.1. GS vs VKGS
In Tab. B.1, we report the results obtained by GS versus
the Vulkan counterpart VKGS. We have split the table into



two sections to distinguish scenes from MipNerf360 (top)
and Tanks&Temples (bottom). For each scene, we report
the size of the model in terms of number of primitives and
report left-to-right speed comparisons in terms of FPS and
quality metrics in terms of PSNR, SSIM and LPIPS, aver-
aged over all the test views. We disregard by now the last
two columns in the table. Staring from the rendering speed,
it is crystal clear that the Vulkan implementation outclasses
the CUDA-based from GS with 2× average speedup, de-
spite GS including the most recent optimizations in the ren-
derer. Except for a few cases, the quality metrics are not
significantly different. However, the fact that there are dif-
ferences indicates potential misalignment between the im-
plementations and the results favor GS because the model
has been trained with the same renderer. We noticed that
the bigger discrepancies happen on models that suffer from
a lot of big semi-transparent floater.

on RTX2080 FPS ↑ PSNR ↑ SSIM ↑ LPIPS ↓
Scene N GS VKGS GS VKGS GS VKGS GS VKGS

bicycle 6.13M 52 144 25.24 24.99 0.768 0.752 0.229 0.243
bonsai 1.24M 105 249 31.98 31.47 0.938 0.926 0.253 0.221
counter 1.22M 82 193 28.69 28.57 0.905 0.894 0.262 0.233
flowers 3.64M 95 171 21.52 21.45 0.600 0.594 0.366 0.367
garden 5.83M 58 126 27.41 26.98 0.867 0.852 0.119 0.127
kitchen 1.85M 65 151 30.32 30.10 0.921 0.908 0.158 0.156
room 1.59M 83 223 30.63 30.70 0.913 0.900 0.289 0.260
stump 4.96M 75 168 26.55 26.25 0.772 0.761 0.244 0.253
treehill 3.78M 81 169 22.49 22.41 0.634 0.621 0.367 0.37

barn 0.89M 129 216 29.06 26.02 0.880 0.860 0.201 0.238
caterpillar 1.07M 129 212 24.36 22.16 0.824 0.796 0.234 0.264
ignatius 2.25M 108 186 22.21 21.10 0.823 0.797 0.187 0.210

meetingroom 1.05M 122 258 26.23 23.15 0.893 0.854 0.209 0.239
truck 2.54M 105 170 25.19 24.21 0.876 0.852 0.178 0.168

Table B.1. Speed and quality comparison between GS and VKGS
on scenes from MipNeRF360 and Tanks&Temples. The last two
columns provide speed comparison of VKGS versus VKRayGS
on MipNeRF360 using the same GS scene model.

C. Qualitative examples
In Figs. C.1 to C.3 we provide the rendering of the first
test image of all scenes we evaluated on. We report re-
sults obtained with GOF and our VKRayGS. The goal is to
validate that visually there is barely any visible difference
between the two renderings, while our method being order
of magnitude faster. Clearly, given that the quality scores
do not perfectly match, there are some differences that are
mainly due to discrepancies between the Vulkan-based ren-
dering pipeline and the one from GOF. E.g. we might have
different ways of culling primitives that introduce differ-
ences mainly at the borders, or different ways of address-
ing out-of-bound colors, which could make saturated areas
darker. Aligning differences between the Vulkan-based ren-
derer and GOF are beyond our contributions, and thus out
of our paper’s scope.



Figure C.1. First test images of the MipNerf360 scenes bicycle, bonsai, counter, flowers and garden, rendered by GOF and our method
VKRayGS.



Figure C.2. First test images of the MipNerf360 scenes kitchen, room, stump and treehill, rendered by GOF and our method VKRayGS.



Figure C.3. First test images of the Tanks&Temples scenes barn, caterpillar, ignatius, meetingroom and truck, rendered by GOF and our
method VKRayGS.


