
Go-with-the-Flow:
Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise

Supplementary Material

Figure 8. Diagram of our noise warping algorithm. A case exam-
ple of our algorithm illustrates both the expansion and contraction
cases, along with example density values. Each node represents
some noise pixel ‘q’. Noise values q0..3 are transferred from frame
0 to frame 1 using forward optical flow, and the remaining pixels
in frame 1 that did not receive any values obtain their values from
frame 0 using reverse optical flow (the expansion case). In the
contraction cases such as q′2, their densities become the sum of
their sources. And in the expansion case, where one source pixel
spreads out into multiple target pixels, such as q2 spreading out
into q′1 and q′3, its density is dispersed.

5. Method

5.1. Noise Warping Algorithm Details

Continuing the discussion in Sec. 3, we elaborate on our
noise warping algorithm. We provide algorithmic pseu-
docode for our noise-warping algorithm in Algorithm 1, in
pytorch-like pseudocode in Fig. 17. The full source code
and models are open source and can be found on GitHub.
We illustrate the contraction and expansion processes of our
noise warping algorithm in Fig. 8.

5.2. Gaussianity preservation of our noise warping
algorithm

In this section, we discuss our noise warping algorithm, pro-
viding a formal proof of its Gaussianity preservation prop-
erties. We also present an illustrative example that demon-
strates how noise that undergoes expansion and subsequent
contraction returns to its original state, showcasing how our
noise warping algorithm maintains the underlying Gaussian
distribution throughout the warping process.

Proof. For each (x, y) ∈ V , R(x, y) is a collection of up-

Algorithm 1 Go-with-the-Flow next-frame warping

1: Input: previous-frame noise q ∈ RD, previous-frame
density p ∈ RD, forward flow f : D → N2, backward
flow f ′ : D → N2.

2: Let G = (V, V ′, E) be a bipartite graph with V = D,
V ′ = D and edge set E = {} to be constructed.

3: for v in V do ▷ Contraction
4: E ← E ∪ (v, v + f(v)) if v + f(v′) ∈ D
5: end for
6: for v′ in V ′ do ▷ Expansion
7: if degG(v′) = 0 then ▷ degG(v) denote the degree

of v in G
8: E ← E ∪ (v′ + f ′(v′), v′) if v′ + f ′(v′) ∈ D
9: end if

10: end for
11: for v in V do ▷ Conditional white noise sampling
12: d← degG(v)

13: Sample Z ∼ N (0, Id), and set S ←
∑d

i=1 Zi

14: Xi ← q(v)
d + 1√

d
(Zi − S

d) for i ∈ [d]

15: R(v)← {Xi}i∈[d]

16: end for
17: for (v′) in V ′ do ▷ Compute next-frame noise and

density
18: q′(v′)← 0, p′(v′)← 0, s← 0
19: for v in V such that (v, v′) ∈ E do
20: d← degG(v), α←

p(v)
d

21: q′(v′)← q′(v′) + αR(v).pop()
22: p′(v′)← p′(v′) + α
23: s← s+ α2 1

d
24: end for
25: if s = 0 then
26: Sample q′(v′) ∼ N (0, 1)
27: else
28: q′(v′)← q′(v′)√

s
▷ Renormalize to unit variance

29: end if
30: end for
31: return next-frame noise and density q′, p′.

sampled noise Xi, where

E[Xi] = E[
q(x, y)

d
] + E[

1√
d
(Zi −

S

d
)] = 0

Var(Xi) = Var(
q(x, y)

d
) + Var(

1√
d
(Zi −

S

d
))

=
1

d2
+

1

d
Var(

d− 1

d
Zi −

∑
j ̸=i

Zj

d
)

=
1

d2
+

1

d

(d− 1)2 + (d− 1)

d2
=

1

d
,

https://github.com/Eyeline-Research/Go-with-the-Flow

where we used the fact that q(x, y) and Zi’s are i.i.d. stan-
dard Gaussians. Since Xi is constructed as a weighted sum
of Gaussians, itself is also a Gaussian. Moreover, for i ̸= j,
we compute

Cov(Xi, Xj)

=Cov(
q(x, y)

d
+

1√
d
(Zi −

S

d
),
q(x, y)

d
+

1√
d
(Zj −

S

d
))

=
1

d2
+

1

d
E[(Zi −

S

d
)(Zj −

S

d
)]

=
1

d2
+

1

d
(0− 2

E[ZiS]

d
+

E[S2]

d2
)

=
1

d2
+

1

d
(−2

d
+

1

d
) = 0.

Hence all Xi’s are independent.
For each (x′, y′) ∈ V ′, if degG((x

′, y′)) = 0, then
q′(x′, y′) is sampled as an independent standard Gaus-
sian. Otherwise, the output noise pixel q′(x′, y′) is
built as a weighted sum of R(x, y).pop() for each edge
((x, y), (x′, y′)) ∈ E, where R(x, y).pop() is an indepen-
dent Gaussian of mean 0 and variance 1

degG((x,y)) . Hence
q′(x′, y′) is also a Gaussian with mean 0. The variable s
after executing the inner for loop thus represents the vari-
ance of q′(x′, y′), so the renormalization at the end brings
q′(x′, y′) back to a standard Gaussian. Since the compos-
ing Xi’s are independent, the resulting noise q′ should also
have an independent Gaussian in each pixel.

Example 1 (Exact recovery of expansion-contraction).
Consider the following evolution of noise across three
frames with forward flows fi→j going from frame i to frame
j with i + 1 = j (and backward flow if i − 1 = j). Sup-
pose at frame 1, a pixel v ∈ D with density 1 has noise
q. Suppose further that v′a is a pixel at frame 2 such that
f−1
1→2(v

′
a) = {v}, and v′b ∈ D is the only pixel at frame

2 such that f−1
1→2(v

′
b) = ∅ and f2→1(v

′
b) = v. This rep-

resents the scenario where v is expanded into two pixels
v′a, v

′
b. Then Algorithm 1 with forward flow f1→2 and back-

ward flow f2→1 will result in v′a having density 1/2 and
noise q

2 +
1√
2
(Za−Zb

2), and v′b having density 1/2 and noise
q
2+

1√
2
(Zb−Za

2), where Za and Zb are i.i.d. standard Gaus-
sians. Now, from frame 2 to frame 3, suppose there exists a
pixel v′′ such that f−1

2→3(v
′′) = {v′a, v′b}, i.e., they both v′a

and v′b contract to v′′, and that f3→2(D) ∩ {v′a, v′b} = ∅.
Then Algorithm 1 with forward flow f2→3 and backward
flow f3→2 will result in v′′ having density 1 and noise q,
hence deterministically recovering the noise and density of
v in frame 0.

5.3. Implementation details

We fine-tune the recent state-of-the-art open-source video
diffusion model, CogVideoX-5B [60], on both its T2V and

Figure 9. Qualitative comparisons of camera movement video
generation of our method (b) and MotionClone (c) using a turn-
ing source video (a).

I2V variants. We use a large general-purpose video dataset
composed of 4M videos with resolution≥720×480 ranging
from approximately 10 to 120 seconds in length, with paired
texts captioned by CogVLM2 [52]. We used 8 NVIDIA
A100 80GB GPUs over the course of 40 GPU days, for
30,000 iterations using a rank-2048 LoRA [22] with a learn-
ing rate of 10−5 and a batch size of 8.

Our method is data-agnostic and model-agnostic. It can
be used to add motion control to arbitrary video diffusion
models while only processing the noise sampling during
fine-tuning. For example, it also works with AnimateD-
iff [15] fine-tuned with the WebVid dataset [2], trained
on 8×40GB A100 GPUs over a period of 2 days with 12
frames and 256× 320 resolution. See its qualitative results
in Fig. 16 in the supplementary material.

6. Additional Results

In Fig. 9, we show how the T2V model’s motion priors are
strong enough to make a camera rotate around a 3D object,
whose position is determined by motion patterns alone.

In Fig. 10 we show how the inference-time hyperparam-
eter γ effects the output videos. Larger γ’s allow for a looser
control of motion.

Figure 10. Noise degradation level γ on generated videos. A few frames from the driving video are shown in the leftmost column. Our
model outputs are in the next 3 columns. As degradation decreases (γ from 0.7 to 0.5), the video more strictly adheres to the input flow.
This allows us to control video movement with a user-specified level of precision.

6.1. Qualitative results of training-free image diffu-
sion based video editing

Noise warping methods that do not preserve Gaussianity de-
grade per-frame quality, as originally pointed out in [7]. For
example, using nearest neighbor and bilinear interpolation
destroys the Gaussianity (Fig. 11) and consequently deteri-
orates the per-frame quality on pre-trained image-to-image
diffusion models (Fig. 12 and Fig. 13).

6.2. Comparison to the video diffusion base model
without finetuning

Interestingly, video diffusion models respond to noise warp-
ing even without training. In Fig. 14 the rightmost column,
even though the per-frame quality suffers, the flow of the
output video still roughly follows the flow of the warped
noise. However, because warped noise is statisically dis-
tinct from the pure Gaussian noise CogVideoX was trained
on, without fine-tuning it can result in visual artifacts.

6.3. User study settings and statistics

Fig. 15 presents our user study questionnaires and statistics
for two applications: (1) local object motion control, and
(2) turnable camera movement video generation. Our ques-
tions focus on users’ overall subjective preference, control-
lability, and temporal consistency.

6.4. Model Agnostic

Our method is data- and model-agnostic. It can be used to
add motion control to arbitrary video diffusion models by

only processing the noise sampling during fine-tuning. For
example, it also works with AnimateDiff [15] fine-tuned on
the WebVid dataset [2] (the weights for this model on our
GitHub page). See its qualitative results in Fig. 16. Since re-
lease, the community has also trained a version of Go-with-
the-Flow on HunyuanVideo (linked on our GitHub page).
Therefore, our method will generalize to future more ad-
vanced video diffusion base model.

7. The advantage of noise warping

By using noise warping as a condition for motion, we ef-
fectively discard all structural information from our input
video that cannot be inferred from motion alone. This can
be advantageous, as demonstrated in Fig. 14. MotionClone
does not use optical flow to guide the video trajectory, in-
stead relying on manipulating activations within the diffu-
sion model. As a result, the windmill gains an extra set of
arms, whereas our method, which relies solely on motion
information from optical flow via warped noise, does not
introduce such artifacts.

8. Conclusion

In this work, we introduce a novel and faster-than-real-time
noise warping algorithm that seamlessly incorporates mo-
tion control into video diffusion noise sampling, bridging
the gap between chaos and order in generative modeling.
By leveraging this noise warping technique to preprocess
video data for video diffusion fine-tuning, we provide a uni-

https://github.com/Eyeline-Research/Go-with-the-Flow
https://github.com/Eyeline-Research/Go-with-the-Flow

Figure 11. A direct visualization of the noise produced by our noise warping algorithm, HIWYN [7], bilinear, and nearest neighbor
interpolations. The forward movement in this long roller-coaster video forces the noise to expand significantly. Early in the video, the
HIWYN baseline produces visibly non-Gaussian results. See the full video on our webpage.

Figure 12. Using different noise warping algorithms on Deep-
Floyd IF for video super-resolution on the DAVIS dataset.

fied paradigm for a wide range of user-friendly, motion-
controllable video generation applications. Extensive ex-
periments and user studies demonstrate the superiority of
our method in terms of visual quality, motion controllabil-
ity, and temporal consistency, making it a robust and versa-
tile solution for motion control in video diffusion models.

9. Social impact statement

Our work contributes to the growing field of video genera-
tive models by advancing motion-controllable video gener-
ation, which has the potential to revolutionize creative in-
dustries such as filmmaking and animation. By introduc-
ing a computationally efficient and accessible framework,

Figure 13. Using different noise warping algorithms on DifFRe-
light for portrait video relighting.

our method democratizes high-quality video generation, en-
abling creators, developers, and artists to produce dynamic
content with minimal resources or specialized training.

However, we acknowledge the potential misuse of such
technology, including the creation of deepfakes or mislead-
ing media. To mitigate these risks, we advocate for respon-
sible use, proper content labeling, and the integration of de-
tection mechanisms to ensure ethical deployment. Our ap-
proach also emphasizes compatibility with diverse models,
encouraging transparency and collaboration within the re-
search community to address societal concerns effectively
while maximizing the positive impact of this technology.

https://eyeline-research.github.io/Go-with-the-Flow/

Input Video

Fr
am

e
0

Fr
am

e
1

Optical Flow Ours MotionClone

Fr
am

e
2

CogVideoX
(No Finetuning)

Fr
am

e
3

Fr
am

e
4

Fr
am

e
5

Fr
am

e
6

Fr
am

e
7

Figure 14. We show a cut-and-drag animation of a windmill rotating clockwise, next to the derived optical flow, our outputs, a baseline and
an ablation. Note that the input video column appears to have two sets of panels because it’s being cut and dragged over itself to create
rotational motion. When using noise warping is better: Per-frame structural information can poison the result of MotionClone, giving
the windmill an extra set of arms - whereas ours only receives motion information from optical flow alone via warped noise (there are no
double-windmills in the optical flow patterns). Ablation in rightmost column: warped noise with γ = .5 on the CogVideoX base model
before we fine-tune it. Because warped noise is statisically distinct from the pure Gaussian noise CogVideoX was trained on, without
fine-tuning it can result in visual artifacts. Note how although the per-frame quality suffers here, it still picks up on motion queues from
the warped noise (the camera zooms into the windmill).

(a) User study interface and questions for local object motion control, cor-
responding to Fig. 3 in the main paper.

(b) User study interface and questions for turnable camera movement video
generation, corresponding to Fig. 9 in the main paper.

(c) User study statistics for local object motion control on the first question
“Which video is the best overall?”

(d) User study statistics for local object motion control on the second ques-
tion “Which video best aligns with the user intent for controlling the object
movement based on the input?”

(e) User study statistics for local object motion control on the third ques-
tion “Which video best preserves the intended camera movement from the
input?”

(f) User study statistics for local object motion control on the fourth ques-
tion “Which video maintains the most consistent and stable motion through-
out?”

(g) User study statistics for motion transfer on the first question “Which
video has better overall quality?”

Figure 15. User study questionnaires screenshots and statistics. For all the questions of both applications, our method (the rightmost bar
plot) significantly wins the most user preferences.

Input Video Warped Noise Soaring through New
York City

Soaring through a
forest

Soaring through a
magical crystal cave

Soaring through the
grand canyon

Soaring through the
great wall of China

Soaring through a
post-apocalyptic

wasteland

Soaring over
waterfalls in National

Park

Go-with-the-Flow + AnimateDiff Output Videos

Figure 16. Fine-tuning AnimateDiff with our warped noise flow. We used Go-with-the-Flow to fine-tune AnimateDiff T2V, and display
the results above. The input video is on the left, and from that video we derive warped noise which is used to initialize AnimateDiff on the
columns to its right with different text prompts.

1 def warp_noise(prev_frame, cur_frame, prev_noise, prev_weight):
2

3 height, width, _ = prev_frame.shape
4

5 flow = optical_flow(prev_frame, cur_frame) # Agnostic to the optical flow algorithm
6 backwards_flow = -flow # A cheap approximation of optical_flow(cur_frame, prev_frame)
7

8 expansion_noise = zeros(height, width)
9 contraction_noise = prev_noise.copy()

10

11 expansion_mask = ones (height, width, type=bool)
12 contraction_mask = zeros(height, width, type=bool)
13

14 for x in range(width): for y in range(height):
15 dx, dy = flow[x,y]
16 if 0 <= x+dx <= width-1 and 0 <= y+dy <= height-1:
17 # This particle stays in bounds
18 expansion_mask [x+dx, y+dx] = False
19 contraction_mask[x , y] = True # Contraction mask is True where
20

21 for x in range(width): for y in range(height):
22 if expansion_mask[x, y]:
23 dx, dy = backwards_flow[x,y]
24 expansion_noise [x, y] = prev_noise[x+dx, y+dy]
25

26 # We’ve decided which source pixels are involved in contraction and expansion now
27 contraction_noise &= contraction_mask
28 expansion_noise, contraction_noise, cur_weight = jointly_regaussianize_and_rebalance_weights(
29 expansion_noise, contraction_noise, prev_weight
30) # Regaussianize all noise values here, and divide the weights by the number of pixels in each bin
31

32 contraction_weight = zeros(height, width)
33 for x in range(width): for y in range(height):
34 if contraction_mask[x, y]:
35 # Contraction treats the noise pixels as particles, each moving from the source to the
36 # destination with this flow
37 dx, dy = flow[x,y]
38 # Contraction is a weighted sum of source pixels to a destination pixel
39 pixel_weight = cur_weight[x, y]
40 # Sum all the source noise pixels that contract to the same destination
41 contraction_noise [x+dx, y+dy] += prev_noise[x, y] * pixel_weight
42 # When we multiply a noise pixel by a weight, the variance changes by that weight squared
43 contraction_weight[x+dx, y+dy] += pixel_weight ** 2
44 contraction_noise /= sqrt(contraction_weight) # Adjust the variance of the summed contracted noise
45

46 # Mixing contraction and expansion noises with their respective masks
47 cur_noise = contraction_noise & contraction_mask + expansion_noise & expansion_mask
48

49 return cur_noise, cur_weight

Figure 17. Our noise warping pseudo code.

	. Introduction
	. Related work
	. Image and video diffusion models
	. Motion controllable video generation

	. Method
	. Go-with-the-Flow noise warping
	Algorithm
	Theoretical analysis

	. Training-free image diffusion models with warped noise
	. Fine-tuning video diffusion models with warped noise
	. Video diffusion inference with warped noise

	. Experiments
	. Gaussianity
	. Efficiency
	. Video editing via image diffusion
	DeepFloyd IF video super-resolution
	DifFRelight video relighting

	. Video diffusion with motion control
	Local object motion control
	Motion transfer and camera movement control
	Ablation studies

	. Method
	. Noise Warping Algorithm Details
	. Gaussianity preservation of our noise warping algorithm
	. Implementation details

	. Additional Results
	. Qualitative results of training-free image diffusion based video editing
	. Comparison to the video diffusion base model without finetuning
	. User study settings and statistics
	. Model Agnostic

	. The advantage of noise warping
	. Conclusion
	. Social impact statement

