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1. Contents of the supplementary

In the supplementary materials, we list the following information:

1. Detailed descriptions of the datasets, including known and novel class splits in Section 2.

2. List of variable names used in the paper and their purpose is detailed in Section 3.

3. Pseudo-code representation of the proposed method in Section 4.

4. Ablation study examining the impact of context length in Section 5.

5. Comprehensive literature survey on classification with attributes in CLIP in Section 6.

6. List of attributes and generated pseudo-open class names in Table 6 and 7 respectively.

7. Implementation details for both comparative and ablation methods in Section 8.

8. Additional visualizations of the generated pseudo-open images in Figure 1 (Section 9).

9. Expanded tables detailing domain combinations across the five datasets in Table 9, 10, 11, 12 and 13.

10. Few limitations of OSLOPROMPT in Section 11.

Table 1. Summary of the datasets used.

Dataset Images Classes Domains

Office-Home [32] 15,500 65 4 (Art, Clipart, Product, Real)

PACS [15] 9,991 7 4 (Artpaint, Cartoon, Sketch, Photo)

Multi-Dataset[29] Combined 20 open Various (Office-31 [27], STL-10[6], VisDA2017[19], DomainNet[20])

Mini-DomainNet [20] 362,470 125 4 (Clipart, Painting, Real, Sketch)

VLCS [11] 10,729 5 4 (PASCAL VOC 2007[8], Caltech[12], LabelMe[26], Sun[35])

Table 2. Known-novel class splits for the ODG settings: PACS, VLCS, Office-Home, Multi-dataset, and Mini-DomainNet datasets. Indices

follow the alphabetical order of the class names.

Domain PACS VLCS Office-Home Multi-Datasets Mini-DomainNet

Source 1 3, 0, 1 0, 1 0–14, 21–31 0–30 0–19, 40–59

Source 2 4, 0, 2 1, 2 0–8, 15–20, 32–42 1, 31–41 0–9, 20–39, 80–89

Source 3 5, 1, 2 2, 3 0–2, 9–20, 43–53 31, 33–34, 41–47 10–19, 40–49, 60–79

Target 0–6 0–4 0, 3–4, 9–10, 15–16, 21–23, 32–34, 43–45, 54–64 0, 1, 5–6, 10–11, 14, 17, 20, 26, 31–36, 39–43, 45–46, 48–67 0–4, 8–17, 25–34, 43–47, 75–79, 83–87, 90–125

2. Datasets descriptions

Office-Home Dataset [32]: The Office-Home dataset comprises 15,500 images, carefully organized into 65 distinct classes

that span across four visually diverse domains: Art, Clipart, Product, and Real. Each domain represents a unique visual style,

ranging from artistic renderings to photographic images, making the dataset highly valuable for evaluating domain adaptation

and transfer learning models. This dataset is particularly suited for domain generalization, multi-domain learning, and visual

recognition tasks.
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PACS Dataset [10]: The PACS (Photo, Artpaint, Cartoon, Sketch) dataset consists of 9,991 images, categorized into

seven broad classes: Dog, Elephant, Giraffe, Guitar, House, Horse, and Person. These images are drawn from four distinct

domains: Artpaint, Cartoon, Sketch, and Photo, representing varying styles and abstraction levels. The dataset is widely

recognized for its benchmark utility in domain generalization research, especially for testing models’ robustness to domain

shifts.

VLCS Dataset[11]: This dataset combines images from four different datasets namely (PASCAL VOC 2007 [8], Caltech

[12], LabelMe [26] and Sun [35]) consisting of images spread across five categories namely Bird, Car, Chair, Dog, and

Person. We consider four categories as closed-set and the remaining category as open-set. Each of the datasets is considered

as a separate domain.

Multi-Dataset [29]: The Multi-Dataset combines data from several prominent public datasets, including Office-31 [27],

STL-10 [6], and VisDA2017 [19]. Additionally, it incorporates four domains from DomainNet [20], resulting in a richly

diverse dataset. This composite dataset includes 20 open classes, intentionally absent from the joint label set of the source

domains. This design facilitates tasks such as open-set domain adaptation, where models are challenged to handle unseen

categories and cross-domain learning, providing a comprehensive benchmark for domain adaptation techniques.

Mini-DomainNet [20]: The Mini-DomainNet is a compact yet diverse subset of the DomainNet dataset, featuring im-

ages from 125 categories across four domains: Clipart, Painting, Real, and Sketch. Each domain reflects a distinct visual

characteristic, offering a balanced data distribution to evaluate models in multi-domain and transfer learning scenarios. This

smaller-scale dataset is optimized for quick experimentation while maintaining the challenge and diversity of the full Do-

mainNet.

Table 1 shows the dataset details, while Table 2 details the known-novel class splits, following [3, 28, 30]. In Table 2, the

class names are indexed to integers alphabetically.

3. Variable names and their purpose

Table 3 details the same.

4. Pseudo-code of our training process

We detail the training process of OSLOPROMPT in Algorithm 1, using the variable names from the main paper.

5. Ablation on the context lengths

In this particular section, we analyze the effect of the number of directly learnable tokens q that are introduced in addition to

tokens derived from the visual prompts as given in Eq 9. As observed in Table 4, we can see that when q = 2, it leads to the

best harmonic score. This highlights the need for the balance of the directly learnable context tokens and tokens derived from

visual prompts. In Table 5, we can see that there is better H-score for the context lengthM = 8 for PACS, but we follow

context length 4 since it is followed majorly in the literature including [30], giving better results on majority of the datasets.

6. Literature survey on prompting with descriptions in CLIP

The classification accuracy of CLIP on downstream tasks and open-vocabulary datasets is highly influenced by the quality

of text prompts [23]. Prior works have explored this sensitivity through simple handcrafted templates (e.g., “a photo of

a [CLS]”) [23] or by augmenting these templates with semantically richer attributes generated by large language models

(LLMs) [21].

Expanding beyond prompt engineering, methods such as LaCLIP [9], LaBo [36], and VFC [17] refine CLIP’s visual-

textual alignment by leveraging LLM-enriched captions to improve performance across diverse tasks and domains. Simi-

larly, ARGUE [31] employs LLM-generated attributes, followed by attribute sampling, to enhance visual-semantic mapping.

Another perspective is introduced by Kim et al. [14], which integrates visual attribute learning into prompts using contrastive

learning.

Despite these advancements, the nuanced interplay between LLM-generated attributes and visual data remains underex-

plored. This is where one of the novelties of OSLOPROMPT lies, bridging this gap by effectively integrating LLM-driven

semantic attributes with visual cues to enhance open-set recognition and domain generalization in the low-supervision setting.



Table 3. Variables used in the OSLOPROMPT framework.

Variable Description

Dataset and domains

D Source domains.

Ds sth source domain.

Xs,Ys Input images and labels in the sth source domain.

C Combined set of classes across all the source domains.

Dt,Xt,Yt Target domain dataset, inputs, and labels.

Target domain class definitions

Yknown
t Known target domain classes.

Ynovel
t Novel or outlier classes.

Data augmentation

Copen Synthesized pseudo-open class names by GPT-4o.

Dopen Synthesized pseudo-open images by Stable Diffusion.

Daug Augmented dataset: D ∪Dopen.

Prompts and attributes

Promptv Learnable visual prompts at the first ViT layer of Fv .

Prompty
s

s Domain-specific static prompts.

Ays ,A′
ys(xs)

GPT-4o generated class-wise attributes and attribute-enhanced image embeddings

through cross-attention.

A′′(xs) Class-agnostic semantic encodings for the images.

Prompty
s

s (xs) Final dynamic domain-specific prompt conditioned on the image.

Promptygen Domain-agnostic prompts.

Training objectives

Ldom-spec
ce Supervised contrastive loss for domain-specific prompts.

Lalign Context alignment loss.

Ldom-gen
ce Supervised contrastive loss for domain-agnostic prompts.

Ltotal Total loss combining all objectives.

Model components

Fv,Ft CLIP visual and textual encoders.

Projvt
Projector to transform the visual prompts onto the subset of context tokens of the

domain-agnostic prompts.

wk,wv,wq
Projections for the query, key, and value for cross-attention: Fq

v = Fvwq
T ,

Fk
t = Ftwk

T , Fv
t = Ftwv

T .

Table 4. Ablation on PACS dataset for the number (q) of directly learnable context tokens in the domain-agnostic prompts when the total

context length M is 4.

Number of Tokens (q) H-score

0 94.32

1 94.74

2 94.86

3 93.47

4 92.15



Algorithm 1 OSLOPROMPT: Training algorithm for obtaining domain-agnostic prompts capable of solving LSOSDG

Require: Training data D, domains {s}Ns=1
, the synthesized pseudo-open dataset Dopen: Daug = D ∪Dopen, Fv , Ft

Ensure: Optimize parameters {ν1:q},w
q,wk,wv, Projvt,Promptv

1: Initialize Promptv for the visual prompt learning in Fv

2: Construct and initialize the domain-agnostic prompt Promptgen as given in Eq 9

3: while training not converged do

4: Sample a batch {(x, y)} from Daug

5: for s = 1 to N do

6: Extract samples {(xs, ys)} belonging to Ds

7: Initialize the domain-specific static prompt Prompty
s

s of Ds Eq 3

8: Compute the attribute-enhanced embedding A′
ys(xs) using Eq 4 through the notion of cross attention using

query-key-value formulation

9: Class agnostic encoding A′′(xs) is computed by averaging across all the classes Eq 5

10: Updated image-driven semantic attributes conditioned domain specific prompt Prompty
s

s (xs) is obtained from

Prompty
s

s and A′′(xs) Eq 6

11: Compute the class-posterior probability p(ys|xs) using Eq 8 and Ldom-spec
ce using Eq 7

12: end for

13: Lalign is obtained by computing cosine similarity of Promptgen and {Prompts}
N
s=1

Eq 10 for the known classes

in C
14: Ldom-gen

ce is calculated given (x, y) ∈ Daug for the classes C ∪ Unknown

15: Training objectives: Ltotal ← min
{ν1:q},w

q,wk,wv,
Projvt,Promptv

[

Lalign + L
dom-spec
ce + Ldom-gen

ce

]

(Eq. 11)

16: end while

Table 5. Ablation on context length for the PACS dataset[10] 1-shot setting.

Context Length (M) H-score

4 94.86

8 95.44

16 94.21

7. Class attributes, and the pseudo-open class names generated by GPT-4o

In Table 6 and Table 7 highlight the class-wise four attributes in A and the pseudo-open class names generated in Copen, both

using GPT-4o.

Table 6. Closed-set classes and their attributes generated by GPT-4o for the PACS dataset[10].

Class Attributes

Dog Fur, snout, tail, paw pads

Elephant Large ears, trunk, tusks, wrinkled skin

Giraffe Long neck, spotted pattern, horns, slender legs

Guitar Curved body, strings, fretboard, soundhole

Horse Mane, hooves, muscular build, tail

House Roof, windows, doors, chimney

8. Implementation details for both comparative and ablation methods

We evaluate our proposed methods against several state-of-the-art approaches using their official implementations, incorpo-

rating necessary modifications to ensure compatibility with 1-shot and 5-shot settings. For PromptSRC [13] and STYLIP

[4], we extend their frameworks by integrating synthetic open samples as outlined in our method and employing an ”un-

known” prompt. These enhancements refine the original designs to more effectively address open-set scenarios. Similarly,



Table 7. Fine-grained pseudo-open-set class names vs. closed-set class names for the PACS dataset[10] generated by GPT-4o.

Closed-set Classes Related Fine-Grained Pseudo Open-Set Classes Outputted by GPT-4o

Dog Wolf, Fox, Coyote, Jackal, Dhole, Fennec Fox, Hyena, Maned Wolf

Elephant Mastodon, Woolly Mammoth, Rhinoceros, Hippopotamus

Giraffe Okapi, Pronghorn, Impala, Sable Antelope, Kudu, Eland, Gazelle, Springbok, Nyala,

Gerenuk

Guitar Mandolin, Banjo, Lute, Bouzouki, Sitar, Balalaika, Charango, Oud, Lyre, Zither

Horse Zebra, Donkey, Onager, Kiang, Tarpan, Wild Ass, Quagga

House Castle, Hut, Palace

Additional Fine-Grained Pseudo Open-Set Classes:

Alpaca, Emu, Lynx, Peacock, Ferret, Armadillo, Pangolin, Tamarin, Mongoose, Marten, Caracal, Serval, Ocelot, Civet,

Quokka, Wallaby, Pademelon, Koala, Pika, Aye-aye, Tarsier, Wombat, Kinkajou, Agouti, Coati, Cuscus, Galago, Jerboa,

Marmoset

for CLIP+OpenMax [2], we adapt the approach by computing Mean Activation Vectors (MAVs) for each class using a

modified data loader and optimizing thresholds for improved open-set recognition accuracy.

For MORGAN [18] and 2LM [22], we implement meta-learning strategies on the dataset D, modifying the backbone for

MORGAN and incorporating OpenMax for open-set recognition in 2LM, analogous to CLIP+OpenMax. Meta-training is

conducted over 30 episodes for both methods, during which convergence was observed. Methods such as STYLIP [4] and

ODG-Net [3] are evaluated using the official implementations provided by their authors. All methods are trained for the

default number of epochs specified in their respective implementations.

For the ImageNet experiments, we extend OSLOPROMPT by introducing additional domain-specific prompts selected

from ImageNet templates provided in the official CLIP implementation [24]. To ensure consistency, we use a ViT-B/32

backbone across all models. Optimization is performed using the SGD optimizer with a learning rate of 0.0035 over six

epochs. These adjustments ensure robust and fair comparisons across methods, emphasizing adaptability in joint open-set

and low-shot domain generalization (DG) scenarios. All comparative methods are evaluated in the LSOSDG setting for

consistency.

In the ablation experiments, we generate pseudo-open samples using a Mix-up-based [16] approach, with λ uniformly

sampled from [0.3, 0.7]. For two samples, xs
i ∈ Xs and xs′

j ∈ Xs′ , from source domains s and s′, respectively, the generated

pseudo-open sample xopen ∈ Dopen is defined as:

xopen = λxs
i + (1− λ)xs′

j

where λ ∈ [0.3, 0.7]. For manual domain-specific prompting, ad hoc attributes are created by concatenating the four attributes

of each class along with the class name. For instance, the attributes of the dog class, as shown in Table 6, are ”Fur, snout,

tail, paw pad.” The resulting manual prompt for the dog class becomes: ”A {domain} of dog with Fur, snout, tail, paw pad.”

For the image-conditioning experiments, projected image features from the Meta-Net are incorporated into the prompts

before being passed to the CLIP [24] text encoder. The Meta-Net consists of two linear layers with an intermediate representa-

tion size of 32, with a ReLU activation [1] applied between the layers. Additionally, we evaluate two types of domain-generic

prompting: (1) textual prompting and (2) textual prompting combined with image conditioning, inspired by CoOp [38] and

CoCoOp [37], respectively. In both cases, the context length is fixed at 4.

9. Generated pseudo-open samples by ODG-CLIP [30] and OSLOPROMPT

Fig. 1 compares the pseudo-open images generated by the method of ODG-CLIP, which are mostly coarse-grained, and

OSLOPROMPT, which are fine-grained in nature, given the closed-set images. In Table 8, we compare the FID distance [7]

between the closed set images and the generated pseudo-open samples. The proposed fine-grained pseudo-open samples are

highly similar to closed-set samples when compared to ODG-CLIP’s synthesized pseudo-open samples. The FID score in

our case is low by 4.9 points than that of ODG-CLIP.

10. Detailed results on all the datasets

We report the detailed results for all the domain combinations for the five datasets in Table 9 - 13. In the leave-one-domain-out

protocol, all but one domains are considered as sources, while the rest acts as the target domain.



Figure 1. Pseudo open images generated by [30] and OSLOPROMPT, given the known-class images, for PACS.



Table 8. FID between the closed-set images and generated pseudo-open images for the PACS dataset.

Pseudo-open image synthesis method FID score

ODG-CLIP[30] pseudo open samples 13.04

Fine-grained pseudo open samples (ours) 8.14

Table 9. Accuracy over different target domains in the Mini-DomainNet dataset. The 1-shot results are at the top, and the 5-shot results are

at the bottom. For each case, the other domains are considered as the source domains.

Method
Clipart Painting Sketch Real

Avg Acc Avg H-score

Acc H-score Acc H-score Acc H-score Acc H-score

CLIP + OpenMax [2] 20.50 14.28 19.50 32.42 7.69 32.42 20.00 33.08 16.92 28.05

CLIPN [33] 47.43 40.68 50.81 39.56 42.60 39.91 49.67 43.50 47.63 40.91

MORGAN [18] 26.59 11.28 14.16 16.95 28.41 23.34 20.44 11.25 22.40 15.70

STYLIP [4] 62.48 59.45 60.78 56.15 47.24 43.72 67.25 70.51 59.44 57.46

PROMPTSRC [13] 27.38 19.71 26.91 25.54 20.24 21.72 26.25 14.79 25.20 20.44

2LM [22] 28.06 18.71 23.94 19.62 21.36 20.88 24.65 11.78 24.50 17.75

ODG-Net [3] 21.76 17.50 24.42 27.99 21.98 11.44 20.04 19.40 22.05 19.08

MEDIC [34] 26.53 21.99 24.63 24.08 19.84 20.67 23.93 9.48 23.73 19.05

SCI-PD [5] 17.50 22.95 15.50 23.20 16.00 23.12 16.00 24.04 16.25 23.33

ODG-CLIP [30] 66.84 76.10 54.74 66.25 59.47 60.55 63.16 59.12 61.05 65.50

OSLOPROMPT 76.00 66.00 61.50 66.43 60.00 59.15 78.50 78.69 69.00 67.57

CLIP + OpenMax [2] 31.50 47.17 30.00 45.54 32.82 48.93 35.50 51.17 32.46 48.20

CLIPN [33] 53.39 44.65 58.53 53.04 55.50 50.91 55.71 46.31 55.78 48.53

MORGAN [18] 32.10 21.15 36.26 29.31 35.26 32.32 47.62 25.45 37.81 27.06

STYLIP [4] 64.12 60.03 62.52 60.65 53.87 44.12 75.61 77.93 64.03 60.68

PROMPTSRC [13] 37.68 32.38 33.21 32.00 39.80 31.04 34.80 29.86 36.37 31.32

2LM [22] 38.55 28.27 34.34 25.47 35.19 35.10 45.65 25.94 38.43 28.70

ODG-Net [3] 45.69 30.53 38.53 20.86 39.71 23.41 35.88 20.08 39.95 23.72

MEDIC [34] 39.87 33.08 30.42 28.23 35.83 32.16 41.68 28.94 36.95 30.60

SCI-PD [5] 19.50 28.23 23.50 34.60 15.50 24.18 26.50 35.28 21.25 30.57

ODG-CLIP [30] 79.00 52.12 60.53 58.54 78.97 88.03 79.00 63.28 74.38 65.49

OSLOPROMPT 86.00 63.68 63.00 66.06 63.58 62.03 85.50 74.53 74.52 66.58

11. Potential limitations

We find two potential areas of improvements for OSLOPROMPT, as discussed in the following,

1. Challenges with highly fine-grained datasets: In fine-grained datasets, where differences between classes are subtle,

generating meaningful pseudo-open samples is tricky, and may require more insights in our prompting scheme.

2. Impact of pseudo-open image quality: There is dependence on the Stable diffusion [25] model to generate pseudo-open

samples. When the prompts are fine-grained and specific, there is a chance that the model can introduce artifacts unrelated

to the object in the image.



Table 10. Accuracy over different target domains in the Multi-dataset benchmark. The 1-shot results are shown at the top and the 5-shot

results at the bottom. For each case, the other domains are considered as the source domains.

Method
Clipart Painting Sketch Real

Avg Acc Avg H-score

Acc H-score Acc H-score Acc H-score Acc H-score

CLIP + OpenMax [2] 10.00 18.17 16.15 27.80 12.79 22.67 8.02 14.85 11.74 20.87

CLIPN [33] 41.51 37.31 34.53 34.48 36.38 34.49 46.92 38.82 39.84 36.28

MORGAN [18] 31.66 46.72 26.76 36.43 23.48 31.91 38.08 33.96 30.00 37.26

STYLIP [4] 56.32 50.22 49.10 45.16 39.92 35.28 60.65 59.89 51.50 47.64

PROMPTSRC [13] 27.38 25.06 30.51 31.82 29.10 31.97 33.65 35.85 30.16 31.18

2LM [22] 28.24 38.49 27.47 32.13 31.19 32.19 32.00 36.37 29.73 34.80

ODG-Net [3] 25.88 25.48 24.05 35.85 25.80 27.46 40.92 28.79 29.16 29.40

MEDIC [34] 31.62 34.15 26.31 30.99 27.71 31.29 35.75 36.00 30.35 33.11

SCI-PD [5] 15.37 11.78 17.62 21.48 20.52 24.88 14.30 18.56 16.95 19.18

ODG-CLIP [30] 66.42 71.71 55.25 65.09 58.21 65.71 75.08 75.60 63.74 69.53

OSLOPROMPT 79.04 78.18 66.06 69.49 72.55 62.74 87.55 87.55 76.30 74.49

CLIP + OpenMax [2] 48.04 63.09 62.63 73.06 51.72 65.22 63.97 73.97 56.59 68.84

CLIPN [33] 42.28 38.18 44.76 39.56 47.25 36.32 51.69 42.86 46.50 39.23

MORGAN [18] 35.65 45.48 38.28 44.86 30.48 34.62 37.48 46.26 35.47 42.80

STYLIP [4] 59.70 55.58 52.05 46.25 45.13 37.00 61.43 60.21 54.58 49.76

PROMPTSRC [13] 34.44 36.36 31.50 35.52 38.40 39.75 38.39 40.86 35.68 38.12

2LM [22] 35.31 37.22 34.74 34.43 31.68 31.15 38.44 38.72 35.04 35.38

ODG-Net [3] 29.62 32.93 28.59 33.63 32.41 39.75 46.16 41.41 34.20 36.93

MEDIC [34] 32.24 34.92 34.05 36.31 36.00 34.05 39.38 39.74 35.42 36.26

SCI-PD [5] 27.58 28.05 31.26 22.56 39.41 38.49 30.54 26.46 32.20 28.89

ODG-CLIP [30] 67.65 73.33 71.63 76.26 75.60 71.52 82.71 83.46 74.40 76.14

OSLOPROMPT 83.21 78.69 73.12 75.36 71.86 76.13 90.81 90.00 79.75 80.05



Table 11. Accuracy and H-score over different target domains in the Office-Home dataset. The 1-shot results are shown at the top and the

5-shot results at the bottom. For each case, the other domains are considered as the source domains.

Method
Clipart Product Real World Art

Avg Acc Avg H-score

Acc H-score Acc H-score Acc H-score Acc H-score

CLIP + OpenMax [2] 15.91 31.45 18.70 31.45 25.62 40.58 19.74 27.09 19.99 32.64

CLIPN [33] 48.52 36.07 40.41 31.50 44.50 31.70 43.27 32.06 44.18 32.83

MORGAN [18] 24.88 16.73 4.59 14.95 30.28 24.17 17.07 18.19 19.21 18.51

STYLIP [4] 42.35 20.37 60.00 15.79 62.51 34.13 44.49 17.52 52.34 21.95

PROMPTSRC [13] 22.37 17.44 14.30 12.93 30.10 14.10 21.30 14.94 22.02 14.85

2LM [22] 27.88 13.47 10.12 14.95 30.28 13.61 16.93 12.35 21.30 13.60

ODG-Net [3] 31.30 11.44 1.89 10.89 26.21 13.27 22.48 10.18 20.47 11.45

MEDIC [34] 26.70 11.25 10.83 11.29 28.68 11.64 19.03 12.80 21.31 11.75

SCI-PD [5] 25.00 34.51 29.20 38.44 48.76 56.48 38.10 47.79 35.27 44.31

ODG-CLIP [30] 46.21 54.72 50.41 55.30 58.68 46.87 39.47 54.83 48.69 52.93

OSLOPROMPT 59.09 63.38 81.30 67.35 79.33 70.48 59.21 54.96 69.73 64.04

CLIP + OpenMax [2] 29.55 44.32 29.61 44.39 30.58 42.76 52.63 65.64 35.59 49.28

CLIPN [33] 44.22 40.51 46.81 40.46 49.38 40.47 51.34 39.87 47.94 40.33

MORGAN [18] 40.07 17.62 30.93 11.12 37.63 29.23 36.17 16.55 36.20 18.63

STYLIP [4] 50.62 42.91 65.32 40.28 78.42 51.98 53.11 34.67 61.87 42.46

PROMPTSRC [13] 32.30 20.82 30.20 22.08 28.21 16.98 33.70 21.51 31.10 20.35

2LM [22] 35.97 11.23 28.33 14.91 28.01 25.35 25.22 24.32 29.38 18.95

ODG-Net [3] 43.65 22.11 36.01 12.59 28.74 16.05 29.68 13.08 34.52 15.96

MEDIC [34] 35.27 16.11 27.42 16.31 31.66 20.59 27.24 20.77 30.40 18.45

SCI-PD [5] 25.76 34.97 35.77 41.26 45.40 57.40 25.00 36.36 32.98 42.50

ODG-CLIP [30] 45.45 47.90 73.17 81.22 71.07 30.61 31.57 37.50 55.32 49.31

OSLOPROMPT 61.36 57.68 91.86 66.81 80.99 57.03 67.10 66.80 75.33 62.08



Table 12. Accuracy and H-score across target domains in the VLCS dataset. The 1-shot results are shown at the top and the 5-shot results

at the bottom. For each case, the other domains are considered as the source domains.

Method
CALTECH SUN09 VOC2007 LABELME Avg Acc Avg H-score

Acc H-score Acc H-score Acc H-score Acc H-score

CLIP + OpenMax [2] 22.94 37.32 2.08 4.08 21.42 34.85 35.92 51.08 20.59 31.83

CLIPN [33] 25.70 19.14 21.43 19.16 27.40 18.98 26.83 20.66 25.34 19.49

MORGAN [18] 32.40 25.58 22.81 31.12 39.77 28.26 30.44 23.91 31.35 27.22

STYLIP [4] 11.04 19.23 21.45 31.17 25.75 35.54 53.52 52.48 27.94 34.61

PROMPTSRC [13] 26.28 22.25 29.58 27.59 19.34 12.07 24.71 18.26 24.98 20.04

2LM [22] 33.09 29.65 22.70 32.38 37.37 27.01 33.28 26.01 31.61 28.76

ODG-Net [3] 34.93 27.62 21.76 33.37 41.08 30.25 31.57 25.42 32.33 29.17

MEDIC [34] 33.41 27.37 27.86 27.08 35.62 23.80 34.88 26.86 32.94 26.28

SCI-PD [5] 22.63 23.03 26.42 25.77 11.90 12.13 18.56 17.47 19.88 19.60

ODG-CLIP [30] 80.62 87.25 54.10 50.11 52.95 50.61 22.05 30.84 52.43 54.70

OSLOPROMPT 99.47 99.73 62.75 66.60 78.02 79.55 75.30 61.69 78.89 76.89

CLIP + OpenMax [2] 77.98 87.63 55.35 67.57 64.41 75.17 67.25 68.60 66.25 74.74

CLIPN [33] 27.33 27.07 35.46 29.75 36.52 26.99 32.38 28.00 32.92 27.95

MORGAN [18] 34.59 40.39 48.41 39.91 39.39 39.50 46.27 35.01 42.16 38.70

STYLIP [4] 46.01 55.80 41.25 45.47 42.09 49.02 53.75 45.44 45.78 48.93

PROMPTSRC [13] 36.95 29.57 35.18 32.19 34.27 33.91 38.24 33.77 36.16 32.36

2LM [22] 37.22 38.42 44.73 37.52 38.03 36.79 46.71 36.69 41.67 37.36

ODG-Net [3] 36.33 40.18 52.73 38.70 38.95 35.51 44.20 36.46 43.05 37.71

MEDIC [34] 35.53 36.20 44.33 36.31 40.17 35.95 42.09 34.76 40.53 35.56

SCI-PD [5] 30.24 30.77 32.71 34.01 29.16 28.29 28.34 28.84 30.11 30.48

ODG-CLIP [30] 76.96 86.86 70.82 42.43 47.56 48.22 56.39 50.06 62.93 56.89

OSLOPROMPT 98.95 99.39 64.02 68.26 76.86 76.86 76.33 64.84 79.04 77.34



Table 13. Accuracy and H-score across target domains in the PACS dataset. The 1-shot results are shown at the top and the 5-shot results

are at the bottom. For each case, the other domains are considered as the source domains.

Method
Art Painting Photo Sketch Cartoon Avg Acc Avg H-score

Acc H-score Acc H-score Acc H-score Acc H-score

CLIP + OpenMax [2] 33.83 49.78 14.70 25.63 5.00 9.52 27.44 42.95 20.24 31.97

CLIPN [33] 63.34 54.15 65.46 53.62 63.80 56.84 63.50 58.55 64.03 55.79

MORGAN [18] 28.92 0.94 44.35 21.44 32.22 31.96 44.13 21.91 37.40 19.06

STYLIP [4] 73.17 78.96 73.10 77.68 73.49 43.85 79.78 43.47 74.89 60.99

PROMPTSRC [13] 30.15 17.47 35.83 30.98 37.42 33.05 39.47 26.84 35.72 27.09

2LM [22] 32.53 9.57 36.37 24.89 31.54 30.88 40.45 20.35 35.22 21.42

ODG-Net [3] 36.67 9.00 29.73 12.49 32.56 35.56 40.32 29.61 34.82 21.67

MEDIC [34] 29.47 11.12 34.33 20.61 35.54 28.84 36.28 25.03 33.91 21.40

SCI-PD [5] 26.30 28.75 19.50 22.07 22.31 24.88 25.47 27.65 23.40 25.84

ODG-CLIP [30] 51.34 62.53 59.05 73.28 82.30 87.93 82.88 78.51 68.89 75.56

OSLOPROMPT 91.61 93.43 99.43 99.71 82.75 92.70 97.06 93.59 92.71 94.86

CLIP + OpenMax [2] 63.79 77.55 74.56 85.26 60.47 74.83 76.17 86.29 68.75 80.98

CLIPN [33] 78.10 69.36 78.27 71.89 77.41 71.88 78.36 71.42 78.04 71.14

MORGAN [18] 50.39 33.03 38.52 29.40 45.84 8.95 50.34 24.86 46.27 24.06

STYLIP [4] 75.24 79.67 87.26 88.31 74.45 50.78 83.45 61.27 80.10 70.01

PROMPTSRC [13] 50.71 36.59 48.53 32.53 41.35 22.46 46.84 29.32 46.86 30.23

2LM [22] 51.79 27.75 42.98 28.11 41.79 12.15 50.25 28.23 46.70 24.06

ODG-Net [3] 42.55 32.99 49.07 21.24 49.63 17.72 45.37 31.71 46.66 25.92

MEDIC [34] 48.11 30.37 46.49 27.34 39.65 15.50 45.28 27.00 44.88 25.05

SCI-PD [5] 35.16 36.79 32.48 30.70 35.73 34.45 37.28 36.18 35.16 34.53

ODG-CLIP [30] 82.23 87.13 93.46 96.29 72.09 81.03 86.80 88.19 83.65 88.16

OSLOPROMPT 92.18 94.26 99.60 99.80 85.41 93.50 97.67 92.49 93.72 95.01
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