
MUSt3R: Multi-view Network for Stereo 3D Reconstruction

Supplementary Material

This supplementary material first includes in Ap-
pendix A all ablation studies that justify the design choices
of the MUSt3R architecture. We then provide the promised
qualitative examples of MUSt3R on real scenes from var-
ious datasets in Appendix B and the snippet of code for
the online reconstruction in Appendix C. Finally, we de-
tail in Appendix D the complete quantitative evaluations
of our method on the full sets of sequences from TUM-
RGBD1 and ETH3D2 datasets [3, 4]. This supplementary
is accompanied with a video explaining our contributions
and showing real time examples of online 3D reconstruc-
tion from MUSt3R in challenging scenarios, including large
loop-closure and dynamic scenes. Note that we plan to re-
lease the code to reproduce all these results.

A. Ablation studies
The aim of this section is to provide empirical analysis
of our design choices, starting with our simplification of
the DUSt3R architecture in Appendix A.1, and our mem-
ory management and loss choices in Appendix A.2. Then
in Appendix A.3 we study the scalability of the network to
more views than seen during training.

A.1. Simplifying DUSt3R

As explained in the main paper, the architecture of DUSt3R
cannot easily scale to more views for its asymmetric design
would require to train N different decoders for N views,
which is not trivial and computationally impractical. For
this reason, we propose to leverage a Siamese decoder, i.e.
one decoder for all views, in a symmetric manner. The
symmetric decoder is the core of our model as it enables
to seamlessly scale to more views without the need to re-
train the model. We evaluate here how this choice impacts
the performance compared to the original DUSt3R architec-
ture. In more details, leveraging a symmetric decoder for N
views predictions requires to disable the Rotary positional
encoding (RoPE) in the Cross-Attention (CA) and to add
a learnable encoding to distinguish between the reference
view, that defines the origin of the coordinate system, and
all the other views. We ablate these in the following.
Setup and metric. To diminish compute and increase speed,
we perform ablations in the pairwise setting (N=2) on a
small subset of datasets namely the union of subsets of
Habitat and Megadepth, for a total of 2M pairs of 224×224
resolution images. We evaluate performance on the valida-
tion sets of these two datasets. We believe this setup to be

1https://cvg.cit.tum.de/data/datasets/rgbd-dataset
2https://www.eth3d.net/slam datasets

Figure 5. Qualitative example of MUSt3R reconstructions of
Cambridge Landmarks [2].

https://cvg.cit.tum.de/data/datasets/rgbd-dataset
https://www.eth3d.net/slam_datasets

Figure 6. Qualitative example of MUSt3R reconstructions of MIP-360 [1].

representative enough for us to reasonably extend the con-
clusions to the full training set. We report in Tab. 9 the
average regression error that directly measures the quality
of predicted pointmaps. We observe this metric generally
represents well the performance on downstream tasks. In
the table, Baseline refers to the asymmetric DUSt3R ar-
chitecture. In No RoPE in CA, we remove RoPE in the
cross attentions. In Symmetric, we switch to the sym-
metric decoder setup where we remove the second decoder
and HEAD3D and we use instead the same shared decoder
and head for both images. In Symmetric(embed), we add
the learned embedding B, while it is absent in Symmet-
ric(none).
Results. We report the results of these ablations in Tab. 9.
First, we show that RoPE in the CA block does not mat-
ter for performance. We can thus remove it without loss
in prediction quality. Then, when using a symmetric de-
coder without learnable B encoding collapses in red. It is
rather natural as the network needs to distinguish between
the views, justifying the need for the learnable embedding
B that achieves a performance similar to that of DUSt3R.
Overall, it is clear that a symmetric architecture does not
impact the performance despite halving the amount of train-
able parameters in the decoder.

A.2. MUSt3R architecture and loss

We verified in Appendix A.1 that a symmetric architec-
ture does not impact the performance in the binocular case.

Regression Loss ↓

Baseline 0.193
No RoPE in CA 0.191
Symmetric(none) 0.560
Symmetric(embed) 0.192

Table 9. Analysis of the effects of our proposed simplifications on
DUSt3R in the pairwise setting.

How to handle N views predictions still remains a challenge
however, as directly processing all the views would involve
an intractable number of tokens for both training and test-
ing. For this reason, we favor a memory-based approach
where only a subset of image tokens is used in memory. Im-
ages are thus processed sequentially and we keep the com-
putational complexity low. The following contains the abla-
tions that lead our choices in the design of MUSt3R training
in the multi-view setting. In more details, we demonstrate
the importance of the global 3D feedback from the terminal
layer to earlier layers. We also analyze the effect of com-
puting the loss in log space, that becomes crucial for larger
scenes.
Setup and metric. For the N views case, we choose to train
all variants on 10-tuples and validate on 100-tuples from

Figure 7. Qualitative example of MUSt3R reconstructions of ScanNet++ [8] 0d2ee665b and a24f64f7fb (left column) with varying focal
lengths. RealEstate10K [11] 000c3ab189999a83 and 00ca5123d8ff6f83 (center column). TUM RGB-D [4] freiburg1 desk and xyz (right
column).

5 10 15 20 30 50 75 100
Number of views in memory

0.16

0.18

0.20

0.22

Re
gr

es
sio

n
Lo

ss

Baseline
Constant
Lin
MLP

5 10 15 20 30 50 75 100
Number of views in memory

0.14

0.16

0.18
Re

gr
es

sio
n

Lo
ss

Baseline
Log

Figure 8. Median absolute regression error for ScanNet scenes for 100 views rendered with a varying number of views in memory.
(left) Different injection INJ3D architecture choices. (right) Comparison between a log and the default MASt3R loss for metric pointmap
regression.

the ScanNet++ [8] dataset, split into a training set of 2M
10-tuples and a validation set of 300 100-tuples, totaling for
the latter 30K images from 50 different scenes. We report
the metric 3D regression loss with pointmaps expressed in
the coordinate frame of the first view, meaning no alignment
between the prediction and the ground-truth is required. All
results are renderings N=100 images with a varying num-
ber of images stored in memory (5≤n≤N). We plot in
Fig. 8 the median scene regression error over the validation
subset.

3D feedback. We ablate in Fig. 8 (left) different variants
of Global 3D Feedback from section 3.3 of the main paper.
In particular, we demonstrate that the Baseline architecture
without feedback is far inferior to the MLP injection from
the tokens of the last memory block presented in the main
paper (Sec. 3.3 and Fig. 4). As a reminder, this approach
injects the terminal memory state L−1 to all others with
a LayerNorm followed by a 2 layer MLP, with a fourfold
increase in the hidden dimensions. Interestingly, Lin injec-
tion with a simple linear layer instead of an MLP performs

almost as well except when scaling the memory size. Since
we expect training on all datasets to be a harder task, we fa-
vor a slightly more elaborate injection mechanism. We also
verify that a simple learnable parameter Constant is not
sufficient and actually degrades the performance, demon-
strating that our feedback layer is effectively fetching in-
formation from the terminal memory layer and not simply
adding a constant bias to the memory tokens. Importantly,
a natural choice would be to inject global information from
the final layer L of the network, i.e. the one right before the
prediction head. We find that this method leads to a signifi-
cantly degraded performance. We hypothesize that using L
might be too constrained by HEAD3D, and therefore it is bet-
ter to add feedback from layer L−1, the terminal memory
layer.
Computing the loss in log space. To analyze the choice of
log space loss in section 4 of the main paper, we compare
two MUSt3R models trained following the recipe of Sec. 4
of the main paper.

The Log model is trained with the log space loss (Eq.

Methods
7-Scenes NRGBD DTU

Acc ↓ Comp ↓ NC ↑ Acc ↓ Comp ↓ NC ↑ Acc ↓ Comp ↓ NC ↑ FPS Mem
n s Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

F-Recon [7] 0.124 0.076 0.055 0.023 0.619 0.688 0.285 0.206 0.151 0.063 0.655 0.758 - - - - - - (≤ 1)
DUSt3R-224 [6] 0.029 0.012 0.028 0.009 0.668 0.768 0.054 0.025 0.032 0.010 0.802 0.953 2.296 1.297 2.158 1.002 0.747 0.848 0.74 (0.78) 38.1G
Spann3R [5] 0.034 0.015 0.024 0.009 0.664 0.763 0.069 0.032 0.029 0.011 0.778 0.937 4.785 2.268 2.743 1.295 0.721 0.823 27.38 (65.49) 5.0G

MUSt3R-224 10 1 0.037 0.017 0.026 0.010 0.654 0.741 0.064 0.028 0.032 0.011 0.778 0.922 3.256 1.863 2.193 0.995 0.715 0.815 86.31 2.5G
MUSt3R-224 20 1 0.030 0.013 0.026 0.010 0.662 0.753 0.061 0.026 0.029 0.011 0.786 0.928 3.256 1.863 2.193 0.995 0.715 0.815 59.51 2.9G
MUSt3R-224 all 1 0.028 0.012 0.027 0.010 0.665 0.758 0.062 0.025 0.031 0.012 0.788 0.930 3.256 1.863 2.193 0.995 0.715 0.815 40.41 4.1G
MUSt3R-224 all 5 0.035 0.015 0.027 0.011 0.662 0.752 0.059 0.025 0.029 0.011 0.792 0.934 3.261 1.855 2.157 1.016 0.715 0.815 68.83 4.1G
MUSt3R-224 all 10 0.037 0.016 0.028 0.011 0.661 0.751 0.057 0.025 0.028 0.011 0.792 0.934 3.269 1.805 2.147 0.978 0.715 0.816 72.59 4.8G

MUSt3R-512 10 1 0.028 0.009 0.025 0.007 0.617 0.682 0.052 0.023 0.019 0.008 0.764 0.907 3.261 1.681 1.965 0.765 0.661 0.741 25.01 4.3G
MUSt3R-512 20 1 0.025 0.009 0.026 0.008 0.617 0.683 0.048 0.022 0.019 0.008 0.769 0.911 3.261 1.681 1.965 0.765 0.661 0.741 17.37 5.3G
MUSt3R-512 all 1 0.026 0.009 0.027 0.009 0.617 0.682 0.048 0.022 0.020 0.008 0.768 0.911 3.261 1.681 1.965 0.765 0.661 0.741 12.10 8.1G
MUSt3R-512 all 5 0.036 0.014 0.025 0.008 0.616 0.680 0.048 0.021 0.019 0.008 0.770 0.912 3.353 1.741 1.982 0.772 0.663 0.742 13.52 9.9G
MUSt3R-512 all 10 0.042 0.016 0.024 0.008 0.615 0.679 0.047 0.021 0.019 0.007 0.769 0.910 3.493 1.888 2.046 0.809 0.664 0.745 12.79 10.5G

Table 10. Comparison with Spann3R. We evaluate MUSt3R for different maximum size of memory (n) and different number of images
at once when updating the memory (s). For s=1, we initialize with two images to match the training configuration. FPS numbers in
parenthesis are from [5]. For DUSt3R, our FPS and GPU memory numbers were obtained with the 224 linear model and a complete graph.

8 in the main paper) while Baseline is trained with the de-
fault metric regression loss from MASt3R. Again, we show
the results for varying number of images used in the mem-
ory in Fig. 8 (Right). We can notice a clear gap between
the two losses when going above 10 views in memory, the
model being trained with the loss in log space providing a
significantly better scaling to more views. For instance with
n=50 views in memory the baseline achieves 13.4cm ac-
curacy vs. 12.6 for the log space loss. An interpretation is
that the log space loss allows the network to regress larger
values which is crucial for more input views as they will
most often observe larger parts of the scenes.

A.3. More views at inference

Beyond architectural choices, an important result of the pre-
vious section is the scalability of MUSt3R to more views
than ever seen during training, as explained in section 3.2
of the main paper. In particular, we can use our architecture
to robustly predict from n≫10 views in memory despite be-
ing trained only with n≤10 as seen in Fig. 8. Interestingly,
it can also process s≫1 views at the same time while having
been trained to predict s=1 views at the same time.

In this section, we study the impact of the number of
views in the memory (n) and the number of views used
at once (s) when updating the memory in MUSt3R. These
comparisons can be seen on the one hand in Tab. 10 where
we complement Tab. 6 of the main paper with experiments
on MUSt3R varying n and s during inference (see columns
2 and 3).
Number of views in memory. The plots in Fig. 8 suggest
that the model can successfully leverage up to n=50 views
in the memory, despite being only trained with at most 10

Figure 9. Qualitative comparison between MUSt3R (left) and
Spann3R (right) on sequences from the TUM RGBD, 7-Scenes
and NRGBD datasets.

fr1 fr2 fr3
floor 360 hsph 360 kid coke desk p dishes flow bqt flow br met sph met sph2 pion 360 pion slm pion slm2 pion slm3 rpy cab lcab ns nt far ns nt loop ns tex far ns tex loop sit hsph sit rpy sit stat sit xyz str nt far str nt near str tex far str tex near teddy walk hsph walk rpy walk stat walk xyz Avg

RMSE ATE Tracking Error [cm] ↓

D GlORIE-VO * [9] 15.5 84.2 108.6 5.4 1.9 3.0 2.7 3.5 5.6 6.0 31.5 87.1 130.1 170.8 0.4 2.0 5.8 2.5 73.6 2.2 4.0 3.4 1.8 - 0.9 1.6 1.9 1.0 1.9 3.7 1.9 5.5 2.3 1.5 23.4

Spann3R [5] 75.6 116.9 144.5 64.7 12.7 9.8 19.5 28.9 66.2 76.6 154.7 193.9 200.5 206.5 3.9 3.3 154.6 56.4 138.3 23.4 191.9 26.0 6.6 2.8 7.0 27.3 76.7 52.1 76.6 65.5 33.3 15.0 2.2 9.2 68.9
U MUSt3R-224-C 8.8 88.4 130.8 11.5 5.0 7.2 7.9 3.2 13.2 19.0 71.1 47.7 140.3 45.4 2.0 2.2 5.7 12.0 142.2 12.7 11.8 32.9 6.5 2.7 5.6 4.4 15.7 5.3 7.0 5.8 37.2 18.0 1.7 4.7 27.5

MUSt3R-224 5.0 79.6 74.1 8.6 3.0 5.5 5.0 2.2 11.4 10.9 40.5 18.1 69.1 41.8 1.4 1.6 4.6 8.6 117.2 10.8 10.6 30.9 6.5 2.0 4.2 3.2 10.2 4.1 6.4 3.2 28.3 17.8 1.4 3.1 19.1

Vertical FoV Error (in degrees) ↓

Spann3R [5] 31.46 8.85 2.98 11.94 11.78 11.97 13.96 16.54 9.15 10.65 10.86 11.8 11.64 0.86 12.41 9.53 9.53 7.55 8.7 10.54 17.37 9.6 9.78 9.77 8.83 12.16 17.86 10.57 9.87 10.78 9.41 9.16 9.54 9.46 11.08
U MUSt3R-224-C 0.15 0.30 0.95 0.90 0.44 0.99 0.04 1.23 0.52 0.40 0.69 0.66 1.26 0.60 0.45 0.61 0.75 2.25 3.4 5.47 5.09 0.43 0.49 2.86 3.16 0.70 0.42 0.64 0.74 0.09 0.07 0.80 2.08 1.72 1.22

MUSt3R-224 0.14 0.30 0.95 0.90 0.44 0.99 0.04 1.23 0.52 0.40 0.68 0.70 1.26 0.61 0.45 0.61 0.75 2.25 3.4 5.47 5.09 0.43 0.47 2.86 3.16 0.70 0.42 0.64 0.74 0.09 0.07 0.80 2.08 1.72 1.22

Scale Error ↓

D GlORIE-VO * [9] 0.85 19.14 3.27 0.62 1.27 0.88 0.72 1.61 0.8 1.82 3.94 1.11 0.28 0.86 1.62 1.51 3.19 1.96 0.4 2.56 1.4 2.39 2.25 0.63 2.38 2.25 1.04 2.53 1.34 1.08 2.79 3.41 0.15 12.8 2.50

Spann3R [5] 0.9 3.2 4.31 2.8 5.25 3.54 3.57 2.91 3.36 1.81 3.96 5.92 2.84 4.24 2.66 4.36 10.25 9.0 7.41 9.59 2.3 3.28 0.2 4.33 7.43 5.59 5.12 6.83 7.04 1.82 3.54 0.81 1.59 6.82 4.37
U MUSt3R-224-C 0.19 0.19 0.36 0.07 0.09 0.04 0.02 0.19 0.01 0.63 0.46 0.12 0.2 0.14 0.11 0.05 0.36 0.04 0.52 1.21 0.52 0.68 0.89 0.28 0.01 0.03 0.54 0.49 0.13 0.28 0.49 0.94 0.62 0.02 0.32

MUSt3R-224 0.22 0.1 0.07 0.00 0.07 0.02 0.00 0.18 0.02 0.26 0.36 0.07 0.09 0.09 0.00 0.06 0.38 0.04 0.42 1.18 0.51 0.59 0.88 0.04 0.02 0.04 0.54 0.46 0.15 0.28 0.24 0.89 0.47 0.02 0.26

Table 11. Detailed results on TUM RGBD [4] (34 sequences not included in Tab. 1, and summarized in Tab. 2 of the main text). One
Dense (D) versus dense unconstrained (U) methods on TUM-RGBD SLAM benchmark. (*) GlORIE-SLAM [10] was re-run without Loop
Closure and global Bundle Adjustment.

cash1 cash2 cei1 de3 dech1 eiflli eillc1 eillc2 eiglc3 mq1 mq4 mqfa1 mqfa2 mqhe mo1 plr2 plt3 plt4 plt5 pltsc1 ref1 rep sfmbe sfmgr sfmhl sfmlr1 sf2 sf3 sfsh vili1 vili2 Avg

RMSE ATE Tracking Error [m] ↓

Spann3R[5] 0.05 0.08 2.3 0.96 1.25 1.41 0.68 0.12 0.76 0.73 1.09 0.5 0.03 0.25 0.65 0.38 0.18 0.05 0.25 0.95 0.39 0.91 0.5 5.93 7.72 1.36 0.1 0.14 0.1 0.84 0.18 0.99
MUSt3R-224-C 0.06 0.05 2.01 0.89 0.81 1.32 0.73 0.09 0.93 0.79 0.6 0.36 0.07 0.19 0.18 0.07 0.28 0.03 0.24 0.08 0.39 0.76 0.14 4.32 6.12 0.72 0.36 0.35 0.1 0.63 0.26 0.77
MUSt3R-224 0.04 0.03 1.98 1.02 0.85 1.29 0.59 0.08 0.64 0.32 0.33 0.42 0.04 0.16 0.26 0.07 0.12 0.06 0.2 0.1 0.39 0.31 0.11 5.96 5.0 0.72 0.05 0.08 0.09 0.28 0.14 0.70

Vertical FoV Error (in degrees)↓

Spann3R [5] 21.26 17.24 27.83 26.53 26.16 28.28 25.55 26.28 25.78 28.63 30.33 67.47 26.86 27.41 25.92 28.64 26.01 27.0 25.96 26.5 25.51 25.61 16.62 26.09 26.94 26.61 25.51 25.37 25.62 67.27 26.95 28.50
MUSt3R-224-C 3.68 1.04 5.89 2.01 1.35 13.67 2.56 1.82 1.93 5.18 6.28 9.25 5.51 7.79 1.75 10.39 14.07 11.47 12.37 1.12 3.56 0.03 2.04 4.84 4.28 1.42 1.65 2.8 2.43 11.52 13.92 5.40
MUSt3R-224 0.63 1.01 1.4 1.0 1.39 10.97 1.17 1.16 1.07 3.27 2.12 12.15 6.84 3.76 0.81 7.46 4.28 8.04 6.56 1.0 3.1 1.6 0.33 0.72 2.63 1.25 0.94 0.11 2.66 4.21 4.58 3.17

Scale Error (ratio of GT scale) ↓

Spann3R [5] 1.03 0.79 1.17 0.4 1.51 2.33 4.87 5.44 4.02 1.8 2.9 0.64 1.67 0.86 4.22 0.25 1.14 0.16 0.05 3.31 0.63 0.3 3.42 8.06 13.27 7.2 3.62 4.66 1.85 3.05 2.11 2.79
MUSt3R-224-C 0.49 0.32 0.28 0.59 0.32 0.67 0.25 0.19 0.27 0.48 0.26 0.63 0.53 0.59 0.13 0.65 0.01 0.62 0.54 0.29 0.57 0.4 0.19 0.49 0.04 0.02 0.13 0.06 0.3 0.21 0.65 0.36
MUSt3R-224 0.32 0.4 0.49 0.77 0.41 0.61 0.05 0.12 0.04 0.67 0.41 0.01 0.74 0.72 0.05 0.48 0.43 0.82 0.62 0.11 0.67 0.05 0.19 0.09 0.37 0.01 0.11 0.06 0.21 0.34 0.61 0.35

Table 12. Detailed results on ETH3D SLAM [3] (32 sequences not included in Table 5 of the main paper). RMSE ATE, Vertical FoV
and Scale errors for three dense unconstrained (U) methods.

views. Beyond 50 views, the results do not improve further.
The results in Tab. 10 reinforce this observation. MUSt3R-
224 n=10, s=1 is worse than n= all, s=1. We note that
in the Spann3R evaluation protocol, there are only 10 im-
ages used for DTU sequences, from 10 to 42 images for
NRGBD and from 25 to 50 for 7-Scenes explaining the lim-
ited difference between n=20, s=1 and n= all, s=1.

Number of views at once. We also study how MUSt3R
behaves when using multiple views to update the mem-
ory at the same time. Note that in most experiments we
only use one image at a time, except for initialization
where we start with s=2 images. We run experiments with
s=5 and s=10 views to update the memory. Results on
DTU, NRGBD and 7-Scenes are shown in Tab. 10 for both
MUSt3R-224 and MUSt3R-512. We observe that predict-
ing multiple images at the same time does not significantly
degrade the performance. Interestingly, it yields a decent in-
crease in FPS for MUSt3R-224: (72.59 for s=10 vs. 40.41
for s=1), at the cost of a slightly increased memory usage
(4.8G for s=10 vs. 4.1G for s=1). For MUSt3R-512, the
FPS difference is not significant and does not really justify
the increased memory cost.

B. Qualitative examples
As promised in Sections 1 and 5.1 of the main paper,
we provide here additional qualitative results on various
datasets. Image poses are predicted via Procrustes analy-
sis, and for visualization purposes, we only show highly
confident points. We wish to demonstrate the ease of use
and plug-and-play nature of MUSt3R in varied scenarios,
and its robustness indoors Fig. 7, outdoors Fig. 5 or object-
centric Fig. 6. We emphasize that our approach does not
assume a single set of intrinsics for an image collection and
seamlessly works with heterogeneous sensors, as shown in
the ScanNet++ scenes in Fig. 7 (left).
Video Material. We provide a supplementary video con-
taining examples of uncalibrated online reconstructions on
the TUM-RGBD dataset. It is worth noting that the visu-
alizations are the raw predictions by the network: global
pointmaps and camera poses obtained via Procrustes. We
denote in green the chosen memory frames, and only show
the pointmaps of those, plus the current prediction with as-
sociated camera frustrum in blue. The only post-processing
is a simple filtering of the pointmaps with a threshold on the
confidence (bottom right in the video) for better visibility.
This threshold explains why dynamic objects and humans
do not appear in the visualization: the network consistently
predicts low confidence values for these and are thus not
visible in the interface.

perc=85
thresh=0.05
def online_update(frame,munst3r,memory,scene3d):

forward view with current memory
Xi1, Xii, new_tokens=munst3r(frame,memory)
depth and focal from local prediction
depth = Xii[...,-1] # [H,W]
focal = get_focal(depth)
pose via procrustes between local and global
pose = procrustes_align(Xii,Xi1)
viewing direction for each pixel
rays = normalize(Xi1-pose.t)
viewing-direction aware 3D discovery rate
dists = scene3d.query(Xi1,rays)
if percentile(dists/depth,perc) > thresh:
Append frame tokens to memory
memory.append(new_tokens)
Add predicted points and directions
scene3d.add(Xi1, rays)

return Xi1,focal,pose,depth

Figure 10. Python code for Uncalibrated Visual Odometry.

Qualitative comparisons. We also provide in Fig. 9 quali-
tative comparisons between MUSt3R and Spann3R.

C. Memory Management

We provide in Fig. 10 the pseudo-code for the online algo-
rithm described in Sec. 3.4 of the main paper. We believe
MUSt3R to be an important step towards a simplified VO
and even RGB-SLAM pipeline. In fact, the network is in-
ternally managing all the traditionally heavily engineered
steps such as keypoint selection and matching, pose estima-
tion and 3D triangulation. Our results show that a simplistic
memory frame selection mechanism is enough to outper-
form traditional VO methods.

D. Full Visual Odometry results

In this section we provide the detailed tables of evalu-
ating online MUSt3R model on TUM RGB-D [4] and
ETH3D [3].

D.1. Full TUM RGB-D dataset

Tables 1, 3, 4 in the main paper reported RMSE APE, verti-
cal FoV and scale errors for 11 sequences of TUM-RGBD
dataset [4]; these sequences were selected for being most
frequently evaluated by the recent state-of-the-art methods.
Here, Tab. 11 completes our evaluation and presents de-
tailed results of MUSt3R-224 on all for 34 remaining TUM-
RGBD sequences (see the main paper and Table 2 for the
results aggregated over 5 categories of sequences). The ta-
ble also includes comparison to GlORIE-SLAM [10] run
in VO mode. The full dataset contains extremely hard se-
quences and, to the best of our knowledge, it has never been
fully tested previously by other VO works. Despite its sim-
plicity, MUSt3R performs overall on par with GlORIE-VO

while being substantially faster. Furthermore, MUSt3R out-
performs Spann3R on all sequences.

D.2. ETH3D dataset

Finally, Tab. 12 presents detailed results of MUSt3R-224
on 32 ETH3D sequences which complete the evaluation
of the 8 sequences included in the main paper (Tab. 5).
The table reports RMSE APE, vertical FoV and scale
errors for all 32 sequences and compares MUSt3R and
MUSt3R-C to Spann3R, both in 224 resolution. As the ta-
ble clearly shows, both versions of MUSt3R again outper-
form Spann3R on the vast majority of sequences, although
we note that there is still room for improvements on some
sequences, usually when the scene size becomes too large.
We hope these systematic results, along with code, will help
foster research in this direction.

References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
Anti-Aliased Neural Radiance Fields. In CVPR, 2022. 2

[2] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
PoseNet: a Convolutional Network for Real-Time 6-DOF
Camera Relocalization. In ICCV, 2015. 1

[3] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. BAD
SLAM: Bundle Adjusted Direct RGB-D SLAM. In CVPR,
2019. 1, 5, 6

[4] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the eval-
uation of RGB-D SLAM systems. In IROS, 2012. 1, 3, 5,
6

[5] Hengyi Wang and Lourdes Agapito. 3D Reconstruction with
Spatial Memory. arXiv:2408.16061, 2024. 4, 5

[6] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris
Chidlovskii, and Jérôme Revaud. DUSt3R: Geometric 3D
Vision Made Easy. In CVPR, 2024. 4

[7] Guangkai Xu, Wei Yin, Hao Chen, Chunhua Shen, Kai
Cheng, and Feng Zhao. FrozenRecon: Pose-free 3D Scene
Reconstruction with Frozen Depth Models. In ICCV, 2023.
4

[8] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. ScanNet++: A High-Fidelity Dataset of
3D Indoor Scenes. In ICCV, 2023. 3

[9] Ganlin Zhang, Erik Sandström, Youmin Zhang, Manthan
Patel, Luc Van Gool, and Martin R. Oswald. GlORIE-
SLAM: Globally Optimized RGB-only Implicit Encoding
Point Cloud SLAM. arXiv:2403.19549, 2024. 5

[10] Ganlin Zhang, Erik Sandström, Youmin Zhang, Manthan
Patel, Luc Van Gool, and Martin R Oswald. GLORIE-
SLAM: Globally Optimized RGB-only Implicit Encoding
Point Cloud SLAM. arXiv:2403.19549, 2024. 5, 6

[11] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavel. Stereo Magnification: Learning View
Synthesis using Multiplane Images. ACM Transactions on
Graphics , 37(4):1–12, 2018. 3

	. Ablation studies
	. Simplifying DUSt3R
	. MUSt3R architecture and loss
	. More views at inference

	. Qualitative examples
	. Memory Management
	. Full Visual Odometry results
	. Full TUM RGB-D dataset
	. ETH3D dataset

