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This supplementary material provides detailed informa-
tion on the following: (1) the formulas and examples of
the experimental stimuli tested; (2) some further practical
implications of our work; and (3) the detailed formula for
model alignment scores, along with the model alignment
scores for all models across all tests.

Please open webpage/index . html for the complete
set of the results.

1. Test images

The achromatic Gabor patches used for tests are defined as:
2242
G(z,y) = Ly (1 + ¢ sin (ZWKJZ) e( 2ppd211!?2)) , (D
pp

where L; denotes the background/mean luminance in
cd/m?, ¢ represents the contrast, R is the Gabor radius in
visual degree, and p is the spatial frequency in cycles-per-
degree (cpd). x and y represent the image coordinates,
where 2 € [ Wlandy € [-Z Z]; W = 224 and
H = 224 denote the image width and height, respectively.

To generate chromatic (RG and YV) Gabor stimuli, a
single-channel Gabor patch is first created, the color direc-
tion is set, then converted to DKL color space, transformed
to LMS color space, and finally converted back to RGB to
check for gamut constraints. Note that the RGB channel
values here are still represented in cd/m? units.

The luminance values, G(z,y), were converted to RGB
values using the sSRGB display model, assuming the peak
luminance of 400 cd/m?. The pixels-per-degree (ppd) was
set to 60, which approximates the ppd value for a typical hu-
man observer viewing an Ultra HD display (3840 x 2160).
The resolution of all test and reference images was set to
224 x 224. Except for Supra-threshold Contrast Match-
ing (Section 1.3), the references for all other eight exper-
iments are uniform achromatic images with a luminance of
100 cd/m?.

1.1. Contrast detection

Spatial Frequency - Achromatic - Gabor The ra-
dius was set to 1°, and the background luminance was
100 cd/m?. Test examples are shown in Figure 1.

Spatial Frequency - Achromatic - Band-limited Noise
The background luminance was 100 cd/m?. Test examples
are shown in Figure 2.

Spatial Frequency - Chromatic (RG) - Gabor The ra-
dius was set to 1°, and the background luminance was
100 cd/m?. Test examples are shown in Figure 3.

Spatial Frequency - Chromatic (YV) - Gabor The ra-
dius was set to 1°, and the background luminance was
100 cd/m?. Test examples are shown in Figure 4.

Luminance The radius was set to 1°, and the spatial fre-
quency was 2 cpd. Test examples are shown in Figure 5.

Area The background luminance was 100 cd/m?, and the
spatial frequency was 8 cycles per degree (cpd). Test exam-
ples are shown in Figure 6.

1.2. Contrast masking

Phase-Coherent Masking The test images contained Ga-
bor patches with a spatial frequency of 2 cpd and a radius of
0.5°, while the masks were sinusoidal gratings at the same
spatial frequency of 2 cpd. The background luminance was
32 cd/m?, following the parameters established in [1]. Test
examples are shown in Figure 7.

Phase-Incoherent Masking The test images contained
Gabor patches with a spatial frequency of 1.2 cpd and a ra-
dius of 0.8°, and the masks contained random noise with a
frequency spectrum extending up to 12 cpd. The following
equations outline the process of generating the noise mask
I mask € RWXH:

First, Gaussian noise N (x, y) is generated:

N(z,y) ~N(0,1), ze€[0,W],yel[0,H]. ()

Next, a two-dimensional Fast Fourier Transform (FFT)
is applied to obtain the frequency domain representation
Ny (u,v):

Ny(u,v) = F{N(z,y)}, we€l[0,W],vel0,H]. (3)



Subsequently, frequency filtering is performed:

filtered _ Nf (ua U), p(”v U) <12 de
Ny o) = {O, plu,v) >12¢cpd’ @
p(u,v) = v/ (Ku)? + (K,)?, )

1 U 1
Ky = 2 payquist (mOd (2 + W’ 1) - 2) ) (6)

1 v 1
K, = 2pnyquisl (mOd <2 + Ev 1) - 2) 5 (7N

d .. . ..
where pyyquist = %. The noise in the spatial domain is then
obtained using the inverse Fourier transform:

Np(2,y) = FH{NF (u, v)}. (8)

Finally, the noise mask I, iS generated:

Lot () = Ly (1 + Coask Nbp(w)) !
O’Nbp
where cpas 1S the mask contrast, oN,, Tepresents the stan-
dard deviation of Ny,. The background luminance L; was
37 cd/m?2, consistent with the conditions in [2]. Test exam-
ples are shown in Figure 8.

1.3. Supra-threshold contrast matching

We followed the experimental setup from [3], where the ref-
erence was a sinusoidal grating with a spatial frequency of
5cpd and a luminance of 10 cd/m?, presented at eight dis-
tinct contrast levels c¢,.. The test stimulus was also a sinu-
soidal grating with a luminance of 10 cd/m?, but presented
at various spatial frequencies p;. Examples are shown
in Figure 9.

2. Practical implications

We checked whether our alignment scores (Fig. 6 in the
paper) can indicate how well a model can perform on com-
puter vision tasks. In Figure 10, we show scatter plots of
the alignment scores and different performance indicators
for DINO, DINOV2, and OpenCLIP (data were not avail-
able for other models). The correlations (absolute value
0.55-0.8) suggest that good alignment with the contrast
masking/matching characteristic can improve model’s per-
formance. Such results were consistent for the alignment
of contrast masking and contrast matching, less so for de-
tection (as expected). We did not find a strong correlation
between alignment scores and the parameters of the model
architecture (model size, number of parameters) or com-
putational GFlops. We hope that future work can provide
stronger evidence for the benefits of model-HVS alignment
and spark interest in using low-level human vision models
to introduce invariances or constraints into the training of
the foundation models (via architectural changes, loss func-
tions, or data augmentation).

3. Model alignment scores

Section 3.2 in the main text briefly describes the compu-
tation of Spearman rank-order correlation coefficients for
model alignment scores. This section provides further de-
tails and formulas.

Specifically, for each contour plot, N points were se-
lected along the x-axis Xy, where X represents dimen-
sions such as area, luminance, or mask contrast. Based
on the predictions of castleCSF, we obtain the ground truth
Y1..n, where Y represents sensitivity in contrast detection
and test contrast in contrast masking.

We then scaled each Y;(j = 1...N) by multipliers
mi(i=1...M):

m; = 1010810(0-5)+ 57 logao (). (10)

Yy = m;Y (11)
producing Y] ,,,; and their respective S1. N (Sa)".
Given that psychometric functions near the threshold typ-
ically exhibit uniform shapes across all conditions in psy-
chophysical experiments, we hypothesized that the trend of
scaled scores would remain consistent across all Y7 . The
Spearman’s rank correlation coefficient r4 was calculated as

the similarity metric:

.= COV(R(ml,..NM)aR(Sl...NJ\I)), (12)

OR(m1.. . nwm)OR(S1.. . Num)

where m1._yym = ngl m1. w, R(*) denotes ranked data,
cov(*) represents covariance, and o (x) stands for standard
deviation. For all models and tests, higher r (closer to 1)
reflects a greater model alignment. In the contrast detection
experiment, N = 20, M = 10. In the contrast masking ex-
periment, M = 10 and N is equal to the number of human
data points.

In the main text, we presented the experimental results
for all models in the form of bar charts. To provide higher
decimal precision, the results are presented in Table 1.
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!'Specifically, for these N M conditions, a test and reference signal pair
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Figure 1. Achromatic Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast detection
tests. “cpd” denotes cycles per degree. High-frequency patterns may introduce aliasing artifacts on screens or prints, so we display up to
16 cpd here (no such artifacts were present in our tests). Observations indicate that the human eye is indeed most sensitive to achromatic
Gabor patterns with spatial frequencies around 2—4 cpd.
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Figure 2. Achromatic band-limited noise signals with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in
the contrast detection tests. Human observers were most sensitive to frequencies in the 2—4 cpd range.
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Figure 3. Red-Green (RG) Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast
detection tests. Due to gamut limitations, the maximum achievable contrast is capped at 0.2. It was observed that, compared to achromatic
Gabor patterns, humans are more sensitive to low frequencies when viewing red-green Gabor patterns.
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Figure 4. Yellow-Violet (YV) Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast
detection tests. Due to gamut limitations, the maximum achievable contrast is capped at 0.2. Similar to RG Gabors, humans are also more
sensitive to low-frequency YV Gabors.
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Figure 5. Achromatic Gabor patches with different background luminance (x-axis) and contrasts (y-axis) used as the test images in the
contrast detection tests. Note that very low luminance levels cannot be displayed; therefore, a minimum of 1 cd/m?is used here. In the
experiment, this limitation is not present as we use floating-point inputs.
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Figure 6. Achromatic Gabor patches with different area (radius) (x-axis) and contrasts (y-axis) used as the test images in the contrast
detection tests. In this experiment, we selected a higher spatial frequency (8 cpd); otherwise, it would be impossible to observe a complete
Gabor signal within small areas.
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Figure 7. Images from the Phase-Coherent Masking experiment with varying Contrast Mask (x-axis) and Contrast Test (y-axis). The masks
are sinusoidal gratings, while the test stimuli are Gabor patterns, set against a background luminance of 32 cd/m?.
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Figure 8. Images from the Phase-Incoherent Masking experiment with varying Contrast Mask (x-axis) and Contrast Test (y-axis). The
masks consist of random noise with a frequency spectrum extending up to 12 cpd, while the test stimuli are Gabor patches, presented
against a background luminance of 37 cd/m?.
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Figure 9. Example images from the Contrast Matching experiment. The first column on the left displays the references, which are sinusoidal
gratings at 5 cycles per degree (cpd) with varying reference contrasts. The remaining images on the right are tests with different spatial
frequencies matched to the references. Note that the contrast levels of the references, as well as the contrasts and spatial frequencies of the
tests, are based on the experimental results in [3]. Following the experimental conditions outlined in [3], the background luminance is set
to 10 cd/m?.
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Figure 10. The performance of DINO/DINOv2/OpenCLIP on their classification tasks (from their GitHub repo) shows a potential correla-
tion with the alignment scores in our masking/matching tests.



Table 1. The model alignment scores for all 45 models across nine test types. Spearman’s rank correlation coefficient 5 is used as
the evaluation metric for the contrast detection and contrast masking experiments, with higher values (approaching 1) indicating greater
similarity between the model and the human visual system. For the contrast matching experiment, Root Mean Square Error (RMSE) is
employed as the metric, where lower values (approaching 0) signify a closer match to the human visual system. For each model series, its
best score on each test has been highlighted in bold.

. X . . . Phase Phase
. Spatial Freq. |Spatial Freq. | Spatial Freq.|Spatial Freq.| Luminance Area Contrast
Models Architecture Training Gabor Ach. | Noise Ach. | Gabor RG | Gabor YV |Gabor Ach.|Gabor Ach. Coher'ent Incohe‘rem Matching
dataset Masking | Masking
rst rst rst 7ot 7ot 7ot RMSE/
rsT rsT
No Encoder - - ] 04688 | 04594 [ 05235 [ 06582 | 04188 | 08981 [0.5057 [ 0.6746 [ 02657
ResNet-50 ImageNet 0.3428 0.2506 0.2795 0.3359 0.5623 0.9610 | 0.3716 | 0.8913 | 0.6803
ViT-S/16 ImageNet 0.4769 0.4951 0.5316 0.4517 0.4260 0.9686 | 0.4556 | 0.8844 | 0.3238
VIT-S/8 ImageNet 0.4129 0.4248 0.4211 04114 0.4048 0.9358 0.3504 | 0.6262 | 0.4178
ViT-B/16 ImageNet 0.5281 0.4883 0.6148 0.4699 0.4554 0.9584 | 0.4246 | 0.6351 | 0.4264
DINO ViT-B/8 ImageNet 0.4213 0.4446 0.4398 0.4184 0.3655 0.8929 | 0.4039 | 0.4761 | 0.4283
Xcit-S-12/16 ImageNet 0.5721 0.4783 0.5312 0.4315 0.4436 0.9418 0.5431 | 0.7120 | 0.3239
Xcit-S-12/8 ImageNet 0.4337 0.3961 0.3862 0.3064 0.4373 0.8409 | 0.4250 | 0.7618 | 0.5117
Xcit-M-24/16 ImageNet 0.5424 0.4848 0.4651 0.4330 0.4916 0.9408 0.4576 | 0.6458 | 0.3238
Xcit-M-24/8 ImageNet 0.4852 0.3848 0.3742 0.4030 0.5172 0.8149 | 0.5034 | 0.8028 | 0.4187
ViT-S/14 LVD-142M 0.3976 0.4348 04114 0.5207 0.4865 0.7071 0.8288 | 0.9593 | 0.3271
ViT-B/14 LVD-142M 0.4286 0.5032 0.4898 0.7148 0.5580 0.9216 | 0.8955 | 0.8514 | 0.3255
ViT-L/14 LVD-142M 0.5256 0.4843 0.5152 0.4934 0.5363 0.9493 | 0.7902 | 0.7968 | 0.3803
DINOV2 ViT-g/14 LVD-142M 0.4304 0.5198 0.5277 0.6687 0.4935 0.7856 | 0.8530 | 0.8846 | 0.3127
ViT-S/14 + reg | LVD-142M 0.4508 0.4484 0.4254 0.4252 0.5201 0.6942 | 0.8484 | 0.9254 | 0.3415
ViT-B/14 + reg | LVD-142M 0.4408 0.5180 0.4837 0.6488 0.5705 0.4752 | 0.9549 | 0.9539 | 0.2714
ViT-L/14 + reg | LVD-142M 0.4423 0.5645 0.4799 0.7996 0.5167 0.5289 | 0.8439 | 0.9814 | 0.2595
ViT-g/14 + reg | LVD-142M 0.4351 0.5732 0.4518 0.6670 0.5168 0.5600 | 0.7214 | 0.9295 | 0.2663
ResNet-50 OpenAl 0.3499 0.2903 0.2972 0.3310 0.5703 0.6855 0.4981 | 0.7349 | 0.6505
ResNet-50 YFCC-15M |  0.3604 0.2562 0.3206 0.2729 0.5629 0.9671 0.4506 | 0.6802 | 0.7208
ResNet-101 OpenAl 0.4130 0.3001 0.3403 0.3530 0.5070 0.9568 0.4031 | 0.5697 | 0.6542
ResNet-101 YFCC-15M 0.3414 0.2275 0.3620 0.3479 0.4569 0.9046 | 0.5136 | 0.8588 | 0.5853
ConvNext-B-w | LAION-2B 0.3957 0.2787 0.3772 0.4233 0.4802 0.9590 | 0.3461 | 0.6583 | 0.6752
ConvNext-B-w | LAION-2B+| 0.4649 0.3487 0.4458 0.5648 0.3854 0.7026 | 0.4887 | 0.5971 | 0.4820
OpenCLIP ConvNext-L-d |LAION-2B+| 0.3419 0.2835 0.3911 0.6443 0.1530 0.7690 | 0.4919 | 0.4983 | 0.5803
ConvNext-XXL |LAION-2B+| 0.4136 0.3642 0.3890 0.6212 0.1112 0.8422 | 0.4699 | 0.4586 | 0.4535
ViT-B/32 OpenAl 0.4132 0.5696 0.3748 0.7197 0.1772 0.9434 | 0.4047 | 0.7736 | 0.5484
ViT-B/32 LAION-2B 0.5108 0.6556 0.3146 0.4108 0.3063 0.8673 0.8837 | 0.9620 | 0.3517
ViT-B/16 OpenAl 0.4798 0.5429 0.4138 0.7141 0.2655 0.7887 0.4321 | 0.6451 | 0.4382
ViT-B/16 LAION-2B 0.4654 0.5740 0.4144 0.6922 0.4242 0.7869 | 0.5235 | 0.7725 | 0.4709
ViT-L/14 OpenAl 0.4625 0.5026 0.4357 0.6229 0.4585 0.8892 | 0.5496 | 0.7050 | 0.4789
ViT-L/14 LAION-2B 0.5917 0.5240 0.4801 0.7338 0.3084 0.6430 | 0.7678 | 0.8799 | 0.3490
ViT-B-SAM SA-1B 0.3545 0.3287 0.3577 0.3617 0.3074 0.9714 | 0.4144 | 0.4353 | 0.5877
SAM ViT-L-SAM SA-1B 0.3061 0.2769 0.3160 0.3140 0.3090 0.9598 0.4077 | 0.3787 | 0.6354
ViT-H-SAM SA-1B 0.3651 0.3234 0.3316 0.3863 0.5243 0.9533 0.3983 | 0.5105 | 0.5489
SAM2.1-hiera-tiny SA-V 0.4058 0.3483 0.4315 0.4693 0.4966 0.9660 | 0.4137 | 0.4646 | 0.4805
SAM.2 SAM2.1-hiera-S SA-V 0.4544 0.3705 0.3936 0.4608 0.5389 0.9533 0.398 0.4941 | 0.4472
SAM2.1-hiera-B+ SA-V 0.3728 0.3195 0.4949 0.4993 0.5396 0.9296 | 0.4062 | 0.4882 | 0.4852
SAM2.1-hiera-L SA-V 0.3872 0.3259 0.3695 0.4935 0.5631 0.9431 0.4613 | 0.7361 | 0.4686
ViT-B-MAE ImageNet 0.4471 0.4903 0.4410 0.5008 0.5812 0.9036 | 0.5446 | 0.7277 | 0.4223
MAE ViT-L-MAE ImageNet 0.4284 0.4560 0.4126 0.4803 0.5647 0.8874 | 0.6849 | 0.7043 | 0.4344
ViT-H-MAE ImageNet 0.4250 0.3969 0.3995 0.4737 0.6335 0.6466 | 0.5003 | 0.6088 | 0.4964
SD-VAE SD-v1-5 LAION-5B 0.3527 0.4226 0.8447 0.8051 0.4993 0.8402 | 0.5394 | 0.5579 | 0.4177
SD-xl-base-1.0 | LAION-5B 0.2465 0.1662 0.3811 0.3132 0.4273 0.3561 0.4996 | 0.4962 | 0.6727

ColorVideoVDP|  HVS-based |XR-DAVID+| 0.5545 0.7817 0.7455 0.9339 09020 | 0.8937 [ 07418 | 07626 | 0.2604
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