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This supplementary material provides detailed informa-
tion on the following: (1) the formulas and examples of
the experimental stimuli tested; (2) some further practical
implications of our work; and (3) the detailed formula for
model alignment scores, along with the model alignment
scores for all models across all tests.

Please open webpage/index.html for the complete
set of the results.

1. Test images
The achromatic Gabor patches used for tests are defined as:
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where Lb denotes the background/mean luminance in
cd/m2, c represents the contrast, R is the Gabor radius in
visual degree, and ρ is the spatial frequency in cycles-per-
degree (cpd). x and y represent the image coordinates,
where x ∈ [−W

2 , W
2 ] and y ∈ [−H

2 ,
H
2 ]; W = 224 and

H = 224 denote the image width and height, respectively.
To generate chromatic (RG and YV) Gabor stimuli, a

single-channel Gabor patch is first created, the color direc-
tion is set, then converted to DKL color space, transformed
to LMS color space, and finally converted back to RGB to
check for gamut constraints. Note that the RGB channel
values here are still represented in cd/m2 units.

The luminance values, G(x, y), were converted to RGB
values using the sRGB display model, assuming the peak
luminance of 400 cd/m2. The pixels-per-degree (ppd) was
set to 60, which approximates the ppd value for a typical hu-
man observer viewing an Ultra HD display (3840 × 2160).
The resolution of all test and reference images was set to
224 × 224. Except for Supra-threshold Contrast Match-
ing (Section 1.3), the references for all other eight exper-
iments are uniform achromatic images with a luminance of
100 cd/m2.

1.1. Contrast detection
Spatial Frequency - Achromatic - Gabor The ra-
dius was set to 1◦, and the background luminance was
100 cd/m2. Test examples are shown in Figure 1.

Spatial Frequency - Achromatic - Band-limited Noise
The background luminance was 100 cd/m2. Test examples
are shown in Figure 2.

Spatial Frequency - Chromatic (RG) - Gabor The ra-
dius was set to 1◦, and the background luminance was
100 cd/m2. Test examples are shown in Figure 3.

Spatial Frequency - Chromatic (YV) - Gabor The ra-
dius was set to 1◦, and the background luminance was
100 cd/m2. Test examples are shown in Figure 4.

Luminance The radius was set to 1◦, and the spatial fre-
quency was 2 cpd. Test examples are shown in Figure 5.

Area The background luminance was 100 cd/m2, and the
spatial frequency was 8 cycles per degree (cpd). Test exam-
ples are shown in Figure 6.

1.2. Contrast masking
Phase-Coherent Masking The test images contained Ga-
bor patches with a spatial frequency of 2 cpd and a radius of
0.5◦, while the masks were sinusoidal gratings at the same
spatial frequency of 2 cpd. The background luminance was
32 cd/m2, following the parameters established in [1]. Test
examples are shown in Figure 7.

Phase-Incoherent Masking The test images contained
Gabor patches with a spatial frequency of 1.2 cpd and a ra-
dius of 0.8◦, and the masks contained random noise with a
frequency spectrum extending up to 12 cpd. The following
equations outline the process of generating the noise mask
Imask ∈ RW×H :

First, Gaussian noise N(x, y) is generated:

N(x, y) ∼ N (0, 1), x ∈ [0,W ], y ∈ [0, H]. (2)

Next, a two-dimensional Fast Fourier Transform (FFT)
is applied to obtain the frequency domain representation
Nf (u, v):

Nf (u, v) = F{N(x, y)}, u ∈ [0,W ], v ∈ [0, H]. (3)
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Subsequently, frequency filtering is performed:

Nfiltered
f (u, v) =

{
Nf (u, v), ρ(u, v) ≤ 12 cpd
0, ρ(u, v) > 12 cpd

, (4)
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√
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where ρnyquist =
ppd
2 . The noise in the spatial domain is then

obtained using the inverse Fourier transform:

Nbp(x, y) = F−1{Nfiltered
f (u, v)}. (8)

Finally, the noise mask Imask is generated:

Imask(x, y) = Lb

(
1 + cmask

Nbp(x, y)

σNbp

)
, (9)

where cmask is the mask contrast, σNbp represents the stan-
dard deviation of Nbp. The background luminance Lb was
37 cd/m2, consistent with the conditions in [2]. Test exam-
ples are shown in Figure 8.

1.3. Supra-threshold contrast matching
We followed the experimental setup from [3], where the ref-
erence was a sinusoidal grating with a spatial frequency of
5 cpd and a luminance of 10 cd/m2, presented at eight dis-
tinct contrast levels cr. The test stimulus was also a sinu-
soidal grating with a luminance of 10 cd/m2, but presented
at various spatial frequencies ρt. Examples are shown
in Figure 9.

2. Practical implications
We checked whether our alignment scores (Fig. 6 in the
paper) can indicate how well a model can perform on com-
puter vision tasks. In Figure 10, we show scatter plots of
the alignment scores and different performance indicators
for DINO, DINOv2, and OpenCLIP (data were not avail-
able for other models). The correlations (absolute value
0.55–0.8) suggest that good alignment with the contrast
masking/matching characteristic can improve model’s per-
formance. Such results were consistent for the alignment
of contrast masking and contrast matching, less so for de-
tection (as expected). We did not find a strong correlation
between alignment scores and the parameters of the model
architecture (model size, number of parameters) or com-
putational GFlops. We hope that future work can provide
stronger evidence for the benefits of model-HVS alignment
and spark interest in using low-level human vision models
to introduce invariances or constraints into the training of
the foundation models (via architectural changes, loss func-
tions, or data augmentation).

3. Model alignment scores
Section 3.2 in the main text briefly describes the compu-
tation of Spearman rank-order correlation coefficients for
model alignment scores. This section provides further de-
tails and formulas.

Specifically, for each contour plot, N points were se-
lected along the x-axis X1...N , where X represents dimen-
sions such as area, luminance, or mask contrast. Based
on the predictions of castleCSF, we obtain the ground truth
Y1...N , where Y represents sensitivity in contrast detection
and test contrast in contrast masking.

We then scaled each Yj(j = 1 . . . N) by multipliers
mi(i = 1 . . .M):

mi = 10log10(0.5)+
i−1
M−1 ·log10( 2

0.5 ), (10)

Y ′
ij = miYj , (11)

producing Y ′
1...NM and their respective S1...NM (Sac)1.

Given that psychometric functions near the threshold typ-
ically exhibit uniform shapes across all conditions in psy-
chophysical experiments, we hypothesized that the trend of
scaled scores would remain consistent across all Y1..N . The
Spearman’s rank correlation coefficient rs was calculated as
the similarity metric:

rs =
cov(R(m1...NM ),R(S1...NM ))

σR(m1...NM )σR(S1...NM )
, (12)

where m1...NM =
⋃N

k=1 m1...M , R(∗) denotes ranked data,
cov(∗) represents covariance, and σ(∗) stands for standard
deviation. For all models and tests, higher rs (closer to 1)
reflects a greater model alignment. In the contrast detection
experiment, N = 20,M = 10. In the contrast masking ex-
periment, M = 10 and N is equal to the number of human
data points.

In the main text, we presented the experimental results
for all models in the form of bar charts. To provide higher
decimal precision, the results are presented in Table 1.
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Figure 1. Achromatic Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast detection
tests. “cpd” denotes cycles per degree. High-frequency patterns may introduce aliasing artifacts on screens or prints, so we display up to
16 cpd here (no such artifacts were present in our tests). Observations indicate that the human eye is indeed most sensitive to achromatic
Gabor patterns with spatial frequencies around 2–4 cpd.

Figure 2. Achromatic band-limited noise signals with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in
the contrast detection tests. Human observers were most sensitive to frequencies in the 2–4 cpd range.



Figure 3. Red-Green (RG) Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast
detection tests. Due to gamut limitations, the maximum achievable contrast is capped at 0.2. It was observed that, compared to achromatic
Gabor patterns, humans are more sensitive to low frequencies when viewing red-green Gabor patterns.

Figure 4. Yellow-Violet (YV) Gabors with different spatial frequencies (x-axis) and contrast (y-axis) used as the test images in the contrast
detection tests. Due to gamut limitations, the maximum achievable contrast is capped at 0.2. Similar to RG Gabors, humans are also more
sensitive to low-frequency YV Gabors.



Figure 5. Achromatic Gabor patches with different background luminance (x-axis) and contrasts (y-axis) used as the test images in the
contrast detection tests. Note that very low luminance levels cannot be displayed; therefore, a minimum of 1 cd/m2is used here. In the
experiment, this limitation is not present as we use floating-point inputs.

Figure 6. Achromatic Gabor patches with different area (radius) (x-axis) and contrasts (y-axis) used as the test images in the contrast
detection tests. In this experiment, we selected a higher spatial frequency (8 cpd); otherwise, it would be impossible to observe a complete
Gabor signal within small areas.



Figure 7. Images from the Phase-Coherent Masking experiment with varying Contrast Mask (x-axis) and Contrast Test (y-axis). The masks
are sinusoidal gratings, while the test stimuli are Gabor patterns, set against a background luminance of 32 cd/m2.

Figure 8. Images from the Phase-Incoherent Masking experiment with varying Contrast Mask (x-axis) and Contrast Test (y-axis). The
masks consist of random noise with a frequency spectrum extending up to 12 cpd, while the test stimuli are Gabor patches, presented
against a background luminance of 37 cd/m2.



Figure 9. Example images from the Contrast Matching experiment. The first column on the left displays the references, which are sinusoidal
gratings at 5 cycles per degree (cpd) with varying reference contrasts. The remaining images on the right are tests with different spatial
frequencies matched to the references. Note that the contrast levels of the references, as well as the contrasts and spatial frequencies of the
tests, are based on the experimental results in [3]. Following the experimental conditions outlined in [3], the background luminance is set
to 10 cd/m2.
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Figure 10. The performance of DINO/DINOv2/OpenCLIP on their classification tasks (from their GitHub repo) shows a potential correla-
tion with the alignment scores in our masking/matching tests.



Table 1. The model alignment scores for all 45 models across nine test types. Spearman’s rank correlation coefficient rs is used as
the evaluation metric for the contrast detection and contrast masking experiments, with higher values (approaching 1) indicating greater
similarity between the model and the human visual system. For the contrast matching experiment, Root Mean Square Error (RMSE) is
employed as the metric, where lower values (approaching 0) signify a closer match to the human visual system. For each model series, its
best score on each test has been highlighted in bold.

Models Architecture
Training
dataset

Spatial Freq.
Gabor Ach.

rs↑

Spatial Freq.
Noise Ach.

rs↑

Spatial Freq.
Gabor RG

rs↑

Spatial Freq.
Gabor YV

rs↑

Luminance
Gabor Ach.

rs↑

Area
Gabor Ach.

rs↑

Phase
Coherent
Masking
rs↑

Phase
Incoherent
Masking
rs↑

Contrast
Matching
RMSE↓

No Encoder - - 0.4688 0.4594 0.5235 0.6582 0.4188 0.8981 0.5057 0.6746 0.2657

DINO

ResNet-50 ImageNet 0.3428 0.2506 0.2795 0.3359 0.5623 0.9610 0.3716 0.8913 0.6803
ViT-S/16 ImageNet 0.4769 0.4951 0.5316 0.4517 0.4260 0.9686 0.4556 0.8844 0.3238
ViT-S/8 ImageNet 0.4129 0.4248 0.4211 0.4114 0.4048 0.9358 0.3504 0.6262 0.4178

ViT-B/16 ImageNet 0.5281 0.4883 0.6148 0.4699 0.4554 0.9584 0.4246 0.6351 0.4264
ViT-B/8 ImageNet 0.4213 0.4446 0.4398 0.4184 0.3655 0.8929 0.4039 0.4761 0.4283

Xcit-S-12/16 ImageNet 0.5721 0.4783 0.5312 0.4315 0.4436 0.9418 0.5431 0.7120 0.3239
Xcit-S-12/8 ImageNet 0.4337 0.3961 0.3862 0.3064 0.4373 0.8409 0.4250 0.7618 0.5117

Xcit-M-24/16 ImageNet 0.5424 0.4848 0.4651 0.4330 0.4916 0.9408 0.4576 0.6458 0.3238
Xcit-M-24/8 ImageNet 0.4852 0.3848 0.3742 0.4030 0.5172 0.8149 0.5034 0.8028 0.4187

DINOv2

ViT-S/14 LVD-142M 0.3976 0.4348 0.4114 0.5207 0.4865 0.7071 0.8288 0.9593 0.3271
ViT-B/14 LVD-142M 0.4286 0.5032 0.4898 0.7148 0.5580 0.9216 0.8955 0.8514 0.3255
ViT-L/14 LVD-142M 0.5256 0.4843 0.5152 0.4934 0.5363 0.9493 0.7902 0.7968 0.3803
ViT-g/14 LVD-142M 0.4304 0.5198 0.5277 0.6687 0.4935 0.7856 0.8530 0.8846 0.3127

ViT-S/14 + reg LVD-142M 0.4508 0.4484 0.4254 0.4252 0.5201 0.6942 0.8484 0.9254 0.3415
ViT-B/14 + reg LVD-142M 0.4408 0.5180 0.4837 0.6488 0.5705 0.4752 0.9549 0.9539 0.2714
ViT-L/14 + reg LVD-142M 0.4423 0.5645 0.4799 0.7996 0.5167 0.5289 0.8439 0.9814 0.2595
ViT-g/14 + reg LVD-142M 0.4351 0.5732 0.4518 0.6670 0.5168 0.5600 0.7214 0.9295 0.2663

OpenCLIP

ResNet-50 OpenAI 0.3499 0.2903 0.2972 0.3310 0.5703 0.6855 0.4981 0.7349 0.6505
ResNet-50 YFCC-15M 0.3604 0.2562 0.3206 0.2729 0.5629 0.9671 0.4506 0.6802 0.7208
ResNet-101 OpenAI 0.4130 0.3001 0.3403 0.3530 0.5070 0.9568 0.4031 0.5697 0.6542
ResNet-101 YFCC-15M 0.3414 0.2275 0.3620 0.3479 0.4569 0.9046 0.5136 0.8588 0.5853

ConvNext-B-w LAION-2B 0.3957 0.2787 0.3772 0.4233 0.4802 0.9590 0.3461 0.6583 0.6752
ConvNext-B-w LAION-2B+ 0.4649 0.3487 0.4458 0.5648 0.3854 0.7026 0.4887 0.5971 0.4820
ConvNext-L-d LAION-2B+ 0.3419 0.2835 0.3911 0.6443 0.1530 0.7690 0.4919 0.4983 0.5803

ConvNext-XXL LAION-2B+ 0.4136 0.3642 0.3890 0.6212 0.1112 0.8422 0.4699 0.4586 0.4535
ViT-B/32 OpenAI 0.4132 0.5696 0.3748 0.7197 0.1772 0.9434 0.4047 0.7736 0.5484
ViT-B/32 LAION-2B 0.5108 0.6556 0.3146 0.4108 0.3063 0.8673 0.8837 0.9620 0.3517
ViT-B/16 OpenAI 0.4798 0.5429 0.4138 0.7141 0.2655 0.7887 0.4321 0.6451 0.4382
ViT-B/16 LAION-2B 0.4654 0.5740 0.4144 0.6922 0.4242 0.7869 0.5235 0.7725 0.4709
ViT-L/14 OpenAI 0.4625 0.5026 0.4357 0.6229 0.4585 0.8892 0.5496 0.7050 0.4789
ViT-L/14 LAION-2B 0.5917 0.5240 0.4801 0.7338 0.3084 0.6430 0.7678 0.8799 0.3490

SAM
ViT-B-SAM SA-1B 0.3545 0.3287 0.3577 0.3617 0.3074 0.9714 0.4144 0.4353 0.5877
ViT-L-SAM SA-1B 0.3061 0.2769 0.3160 0.3140 0.3090 0.9598 0.4077 0.3787 0.6354
ViT-H-SAM SA-1B 0.3651 0.3234 0.3316 0.3863 0.5243 0.9533 0.3983 0.5105 0.5489

SAM-2

SAM2.1-hiera-tiny SA-V 0.4058 0.3483 0.4315 0.4693 0.4966 0.9660 0.4137 0.4646 0.4805
SAM2.1-hiera-S SA-V 0.4544 0.3705 0.3936 0.4608 0.5389 0.9533 0.398 0.4941 0.4472

SAM2.1-hiera-B+ SA-V 0.3728 0.3195 0.4949 0.4993 0.5396 0.9296 0.4062 0.4882 0.4852
SAM2.1-hiera-L SA-V 0.3872 0.3259 0.3695 0.4935 0.5631 0.9431 0.4613 0.7361 0.4686

MAE
ViT-B-MAE ImageNet 0.4471 0.4903 0.4410 0.5008 0.5812 0.9036 0.5446 0.7277 0.4223
ViT-L-MAE ImageNet 0.4284 0.4560 0.4126 0.4803 0.5647 0.8874 0.6849 0.7043 0.4344
ViT-H-MAE ImageNet 0.4250 0.3969 0.3995 0.4737 0.6335 0.6466 0.5003 0.6088 0.4964

SD-VAE
SD-v1-5 LAION-5B 0.3527 0.4226 0.8447 0.8051 0.4993 0.8402 0.5394 0.5579 0.4177

SD-xl-base-1.0 LAION-5B 0.2465 0.1662 0.3811 0.3132 0.4273 0.3561 0.4996 0.4962 0.6727

ColorVideoVDP HVS-based XR-DAVID+ 0.5545 0.7817 0.7455 0.9339 0.9020 0.8937 0.7418 0.7626 0.2604
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