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Supplementary Material

In the supplementary material, we provide more valida-
tions about HERA, including comparisons, parameter quan-
tity and inference efficiency. Then, we introduce two addi-
tional tasks to validate our hybrid representation further. For
more visual demonstrations, please refer to our video.

A. More Validations

As detailed in the Experiments section of the main paper,
we implement a baseline that relies exclusively on texture-
mapped meshes, called mesh based avatars. We com-
pare our HERA with the baseline and GaussianAvatars [13]
across various perspectives, expressions, and poses, as il-
lustrated in Fig. 1. HERA integrates the advantages of
both mesh and 3DGS representations while also overcom-
ing their limitations. HERA takes advantage of the accurate
rendering of human faces achieved through UV-mapped
mesh, while also utilizing the modeling features for hair
and eyelashes available in 3DGS. In contrast, mesh repre-
sentation struggles to reconstruct complex structural shapes,
while 3DGS is less adept at modeling low-frequency geo-
metric surfaces with high-frequency textures.

Furthermore, our HERA utilizes an average of 129, 697
splats to model an avatar from Multiface dataset, which is
half the number used by GaussianAvatars (an average of
261, 783 splats). Even if considering the mesh parame-
ters, HERA uses fewer parameters to create a more real-
istic avatar, which states the proposed hybrid representation
makes different primitives reconstruct the scene more effi-
ciently. To infer a video at 2048 × 1334 resolution on a
single NVIDIA RTX A100 GPU, HERA renders at 81 FPS
which suffices for real-time applications.

B. Novel View Synthesis on Static Scenes

Overview. To further validate the effectiveness of our pro-
posed hybrid presentation, we conduct an experiment on
novel view synthesis in static scenes. For this, we follow
the settings outlined in 3DGS [8]. It is important to note
that we do not rig the 3D Gaussians onto the mesh facet
in this scenario, which means that the association between
the two types of primitives is solely established through the
hybrid rendering pipeline during the optimization process.

Datasets. For evaluating static scene data, we perform ex-
periments on the Tanks and Temples [9] and Mip-NeRF
360 [2] datasets. We utilize 5 scenes from the Tanks and
Temples dataset, along with all scenes from the Mip-NeRF
360 dataset in our experiments.

Mesh based Avatars GaussianAvatars Ours

Figure 1. Comparisons of free views, expressions and poses on
Multiface dataset [15]. From left to right, we display the results of
mesh based avatars, GaussianAvatars [13] and ours, respectively.
Since the viewpoints are freely selected, there are no ground truth
images for reference. Zoom in for better views.
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Figure 2. Novel view synthesis on Tank and Temples [9] (top row) and Mip-NeRF 360 [2] (bottom row) datasets. From left to right, we
display the results of Mip-NeRF 360 [2], 3DGS [8], Mip-Splatting [17], our hybrid representation and ground truth images, respectively.
Zoom in for better views.

Method PSNR↑ SSIM↑ LPIPS↓
NeRF [11] 23.85 0.605 0.451

Mip-NeRF [1] 24.04 0.616 0.441
Plenoxels [6] 23.08 0.626 0.463

Instant-NGP [12] 25.68 0.705 0.302
Mip-NeRF 360 [2] 27.57 0.793 0.234

Zip-NeRF [3] 28.54 0.828 0.189
3DGS [8] 27.70 0.826 0.202

Mip-Splatting [17] 27.79 0.827 0.205
Our Hybrid Representation 27.61 0.828 0.199

Our Hybrid Representation* 27.75 0.829 0.194

Table 1. The quantitative results on Mip-NeRF 360 dataset [2].
The * indicates incorporating our hybrid representation with Mip-
Splatting [17]. We denote the best , second best , and third best
scores in different colors.

Baselines. We select Mip-NeRF 360 [2], 3DGS [8] and
Mip-Splatting [17] as the primary comparative baselines.
Additionally, NeRF [11], Mip-NeRF [1], Plenoxels [6],
Instant-NGP [12] and Zip-NeRF [3] are used for quantita-
tive comparisons.

Comparisons. The quantitative results for Mip-NeRF
360 dataset are presented in Table 1. Our hybrid representa-
tion demonstrates significant improvements in LPIPS met-
rics, achieving comparable performance in PSNR and SSIM
metrics relative to state-of-the-art methods. The quantita-
tive results for Tanks and Temples dataset are provided in
Table 2. Our representation outperforms the others, show-
ing marked improvements in LPIPS metrics. This can be
attributed to the more intricate geometries found in the
Mip-NeRF 360 dataset compared to the Tanks and Temples

Method PSNR↑ SSIM↑ LPIPS↓
Plenoxels [6] 21.94 0.708 0.386

Instant-NGP [12] 22.26 0.724 0.347
Mip-NeRF 360 [2] 23.61 0.765 0.283

3DGS [8] 24.01 0.814 0.228
Mip-Splatting [17] 24.21 0.822 0.216

Our Hybrid Representation 24.29 0.822 0.207
Our Hybrid Representation* 24.39 0.824 0.206

Table 2. The quantitative results on Tanks and Temples dataset [9].
The * indicates incorporating our hybrid representation with Mip-
Splatting [17].

dataset. Many scenes in Mip-NeRF 360 dataset feature ex-
tensive grassland areas at the image’s center, while the tar-
get objects in Tanks and Temples dataset possess smoother
surfaces, making them more suitable for mesh modeling.

The qualitative results for static scenes are illustrated in
Fig. 2. Our approach shows significant enhancements on
smooth surfaces characterized by complex color variations.
However, Mip-Splatting still exhibits rendering defects on
smooth surfaces, suggesting that these issues are not solely
related to anti-aliasing. These experimental results under-
score the effectiveness of our proposed hybrid representa-
tion. Further qualitative results from the Mip-NeRF 360 and
Tanks and Temples datasets are displayed in Fig. 3, demon-
strating that improvements are most pronounced on smooth
surfaces, which are effectively represented using meshes.

C. Dynamic Scene Reconstruction

Our hybrid representation can also model Freeview videos
of dynamic scenes. Given a tracked non-parametric mesh,
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Figure 3. More qualitative results on the static scene datasets [2, 9]. From left to right, we display the results of 3DGS [8], Mip-
Splatting [17], our hybrid representation and ground truth images, respectively.



we design a model that utilizes the proposed hybrid rep-
resentation to jointly optimize the parameters of mesh and
3DGS. As the non-parametric mesh always be incomplete
to represent the holistic motion, we apply the tri-plane fea-
ture grid to model the deformation field by following 4D-
GS [14], instead of rigging splats to the mesh as done in
HERA.

C.1. Methods
Given the 3D coordinates of a Gaussian, we represent its
position, scale, rotation, and opacity in the temporal space
by utilizing the deep neural network and tri-plane feature
grid [4, 5, 7]. Specifically, given a Gaussian splat in the
canonical space, we apply a multi-resolution HexPlane [4]
and shallow MLP ϕ to extract and decode the features from
a 4D K-Planes module [7] which contains 6 feature planes
according to the position in canonical space xc = (x, y, z)
and time t. We decode the position, scale, rotation, and
opacity of the 3D Gaussian at any given point in the tempo-
ral sequence, thereby enabling a robust and detailed repre-
sentation of the dynamic scene deformation field modeling.

Specifically, the extracted features on the spatial and
temporal space are denoted as

D(x, y, z, t) = {Dl(x, y), Dl(y, z), Dl(x, z),

Dl(x, t), Dl(y, t), Dl(z, t)|l ∈ {1, 2}},
(1)

where l is the upsampling scale and Dl(i, j) is the multi-
resolution feature plane.

After the features Dl(i, j) from multiple feature planes
are obtained, they are fused to a global feature vector which
consists of both temporal and spatial information:

H =
⋃
i

∏
interp(Dl(y, z), Dl(x, z),

Dl(x, t), Dl(y, t), Dl(z, t)),

(2)

where the ”interp” indicates the bilinear interpolation for
the 2D feature grid plane. Take the position parameter x
of 3D Gaussian as an example, the deformed position can
be computed by decoding the feature vector: x(t) = xc +
ϕx(H). ϕx is the shallow MLP for decoding the position
deformation of Gaussian splat. This design is also applied
to the scale, rotation, and opacity parameters of Gaussian
splats.

For the mesh representation, since the deformation of
mesh has a different pattern from 3DGS, we design the de-
formation of mesh as the translation of each vertex instead
of applying a grid based field, which is a simpler and more
direct approach. In this case, each vertex in the mesh has
its displacement vector, which directly translates it from its
original position to a new position in the deformed state.
The mesh based representation contains the vertices, opac-
ity map, and texture feature map for each frame with a
shared topological structure.

In the initial phase of our method, we tackle the chal-
lenge of tracking a mesh representation in a dynamic scene
using a keyframe based approach. Specifically, we utilize
Reality Capture Software to generate a high-quality tex-
tured mesh for a selected keyframe. This keyframe mesh
serves as the base model against which other frames are
registered and aligned. Next, we apply the mesh to a point
cloud registration algorithm AMM-NRR [16] to establish
the mesh-to-points correspondences and get coarse-tracked
meshes to other frames.

Subsequently, we refine the tracked meshes further in the
differentiable rendering framework to finetune the tracked
mesh of each frame by applying the photometric loss L2

ensuring that the rendered image closely matches the actual
input images from each frame. And the normal consistency
loss Lnc to ensure that the surface normals across the mesh
faces align well with those estimated from the input data.
During this refinement process, the opacity UV map for all
the tracked meshes is set to 1 which indicates full visibility,
and the opacity and texture map are not subject to optimiza-
tion, focusing solely on refining the geometry according to
the photometric and normal constraints from the dynamic
scene.

The photometric loss for the mesh tracking is defined as
the L2 norm term:

L2 =
∑
u∈U

||C(u)− Cgt(u)||22, (3)

where the U is the set of the pixels on the image. The loss
function corresponding to this non-rigid tracking phase is:

Lm = L2 + λncLnc, (4)

where the Lnc is the normal consistency loss for smooth
regularization to the mesh.

After the non-rigid tracking of meshes, we initialize the
point cloud of 3DGS in canonical space according to the
tracked mesh of each frame. For the linear layer y = Wx+b
of MLP for decoding the deformation feature vector, the
learnable parameters W are initialized as normal distribu-
tion N (0, ϵ), where the ϵ is a small value (1 × 10−4), and
the learnable parameters b are initialized as zero. This ini-
tialization of the deformation field ensures that the defor-
mations are close to zero at the beginning of the training
phase, allowing the 3DGS initialized for each frame to be
positioned close to the surface. The vertices, opacity map,
and texture feature map from mesh representation are all
optimized in this phase.

The loss function of optimizing the hybrid representation
is:

L = λ1L1 + λSSIMLSSIM + λtvLtv, (5)

where L1 and LSSIM is the L1 norm loss and structural
similarity loss between the rendered image and ground truth
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Figure 4. The qualitative experiments on the test views of Multiface dataset [15] on dynamic scene reconstruction task. From left to right,
we display ground truth images, the results of our model, 4D-GS [14], MVP [10] and the tracked mesh, respectively. Zoom in for a better
view.

image. The Ltv is the Total Variational (TV) loss on the fea-
ture plane of the deformation field on the spatial and tem-
poral range, which follows HexPlane. The loss function is
applied to the feature plane of the deformation field across
both spatial and temporal dimensions to ensure its smooth-
ness.

C.2. Experiments

We train and evaluate our model on the Multiface dataset
for the dynamic scene reconstruction task. To validate the
robustness and effectiveness of our hybrid representation
on this task, we have carried out comparative experiments
against 2 baselines: MVP [10] and 4D-GS [14].

The qualitative and quantitative results on the Multiface
dataset [15] are shown in Fig. 4 and Table 3, respectively.



Method PSNR↑ SSIM↑ LPIPS↓
Mesh 21.56 0.6747 0.2759

MVP [10] 32.98 0.8648 0.1612
4D-GS [14] 33.76 0.8789 0.1636
Our Model 34.23 0.8872 0.1320

Table 3. The quantitative comparisons on the Multiface
dataset [15] for dynamic scene reconstruction. We denote the
best , and second best scores in different colors.

It can be observed that our method achieves state-of-the-
art performance compared with other baselines which indi-
cates its superior performance over existing baselines. This
highlights the robustness and effectiveness of our proposed
hybrid representation for Freeview video rendering.

Based on modeling the deformation of canonical
3DGS [8], 4D-GS [14] can effectively reconstruct intricate
geometries like hair strands with high fidelity. However,
despite its strengths in handling complex structures, this
method tends to lose subtle details regarding smooth sur-
faces, such as the fine whiskers on a human face.

Meshes are inherently well-suited for representing
smooth surfaces since they allow for modeling the surface
over vertices and topology, thereby enabling the capture of
minute surface variations.

Our model not only preserves the high-fidelity recon-
struction of the hair but also reconstructs the detailed color
appearance of the human face. This indicates that our hy-
brid representation has a significantly better capacity for
the details on the smooth surface, which benefits from
the mesh representation. The mesh is suitable for rep-
resenting the smooth surface and the high-resolution tex-
ture feature map can achieve excellent modeling for com-
plex color appearance and only occupy very little mem-
ory.
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