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Supplementary Material

This supplementary material includes the following con-
tent.

• More specific implementation details;

• Additional hyper-parameter analysis;

• Robustness analysis and its visualization;

• More comparison results;

1. Implementation Details

Training. We construct a training-friendly pipeline that can
be efficiently trained on a workstation equipped with a sin-
gle NVIDIA RTX 3090 using PyTorch 1.9.1. Following the
practice of [10], data augmentation is performed by random
resize with ratio range from 0.5 to 2.0, random horizontal
flipping, random color jitter, and random gaussian blur. Ad-
ditionally, following many existing works (e.g., [1, 9, 10]),
we adopt multi-scale testing augmentations with the scales
{0.5, 0.75, 1, 1.25, 1.5, 1.75} and horizontal flip. We select
the AdamW optimizer with weight decay 1e-2. The batch
size is set to 4 for all datasets. For the NYUDv2 dataset
[6], the learning rate is set to 4e-4, and the fine-tuning pro-
cess spans 400 epochs. Regarding the SUN RGB-D dataset
[7], we adjust the learning rate to 1e-4 and randomly crop
the images to 480×480 pixels, training the network for a
total of 300 epochs. On the MFNet dataset [2], we employ
a learning rate of 8e-5 and conduct 200 epochs of train-
ing. For the PST900 dataset [5], the learning rate is es-
tablished at 1e-4, and the images are randomly cropped to
480×640, with the model being trained for 200 epochs. As
for the MCubeS dataset [4], we set the learning rate to 4e-4
and randomly crop the images to 512×512, completing the
training over 250 epochs. Finally, on the DeLiVER dataset
[10], we adopt a learning rate of 1e-4, with images being
randomly cropped to 768×768, and the training lasts for
200 epochs. In the GoPT [3] paper, the parameters of its
segmentation head (i.e., SETR [11]) are not counted. For
a fair comparison, we have taken these parameters into ac-
count.
Inference. During inference, we do not employ the Masked
Modality Self-Teaching (MMST) strategy, meaning we in-
put clean data without masking any modality and discard
the auxiliary heads S2 and S3 used for single-modality seg-
mentation. We measure the inference time, which is tested
for a 480 × 640 image on the same hardware device, i.e., a
workstation with an NVIDIA RTX 3090 GPU.

X̃i rank Params(M) mIoU(%)

[32, 64, 128, 256] 8.2 57.4
[16, 32, 64, 128] 7.5 59.0
[8, 16, 32, 64] 7.3 58.3

Table 1. Ablation studies of X̃i rank in MAPA module. The i in
X̃i denotes different modalities (RGB or X). Our version is high-
lighted in gray .

Adapter rank Params(M) mIoU(%)

[64, 64, 64, 64] 8.9 55.7
[16, 32, 64, 128] 9.2 55.8
[8, 16, 32, 64] 7.5 59.0
[4, 8, 16, 32] 6.7 58.1

Table 2. Ablation studies of Adapter rank in MAPA module.

DSCF rank Params(M) mIoU(%)

[32, 64, 128, 256] 9.6 58.1
[16, 32, 64, 128] 7.5 59.0
[8, 16, 32, 64] 6.9 57.1

Table 3. Ablation studies of DSCF rank.

2. Hyper-parameter Analysis
We conduct additional hyper-parameter analysis ex-
periments on the NYUDv2 dataset using the Swin-
B as the backbone, with channel dimensions of
{128, 256, 512, 1024} across four stages.
Low-Rank: To achieve an effective and efficient model,
low-rank latent space projection plays a vital role in our
model, influencing our Modality-Aware Prompting and
Adaptation (MAPA) module and Dynamic Sparse Cross-
modality Fusion (DSCF) module. Therefore, the choice of
rank is critical for both the efficiency and effectiveness of
our approach. In Tables 1, 2 and 3, we systematically ex-
plore the impact of different low-rank choices within each
component. Table 1 presents the ablation study on the low-
rank selection of X̃i during the generation of unifying dual-
modality features. Lower ranks lead to poorer performance
due to insufficient information captured by sparse repre-
sentations. Conversely, higher ranks, which capture more
modality-specific details, complicate the identification of



λ2 Params(M) mIoU(%)

1 7.5 57.6
0.1 7.5 58.8

0.01 7.5 59.0
0.001 7.5 57.8

0 7.5 57.3

Table 4. Ablation studies of λ2 in overall loss.

Model RGB + Depth RGB Depth RGB + Depth†

Ours 59.0 55.9 41.0 57.8

Table 5. Overall performance with different modalities. †: Depth
generated from RGB using Depth Anything V2 [8].

unifying features. As shown in Tables 2 and 3, similar
trends are observed when investigating the low-rank choices
for adapters and DSCF, as low ranks struggle to capture
essential information, while higher ranks tend to result in
overfitting. These experiments emphasize the importance
of selecting the best low-rank representations.
Balance Weight: Balance weight λ2 determines the weight
applied to the loss LS2

and LS3
. As shown in Table 4,

setting λ2 too high causes single-modal features to over-
fit cross-modal information, losing modality-specific de-
tails and resulting in minimal gains. Conversely, setting λ2

too low leads to underfitting, with limited performance im-
provement. We set λ2 = 0.01 for optimal performance.

3. Robustness Analysis

Our proposed Masked Modality Self-Teaching (MMST)
strategy mitigates the model’s over-reliance on a single
modality. Consequently, we find that this strategy enhances
the robustness of our model in challenging scenarios, such
as sensor damage. We conduct experiments under various
challenging conditions, e.g., the absence of X modality im-
ages or the absence of RGB images. As shown in Fig. 1,
our model demonstrates superior robustness compared to
CMNeXt [10] and DPLNet [1], especially when the RGB
modality is absent. To more intuitively illustrate the robust-
ness of our model in the above challenging scenarios, As il-
lustrated in Fig. 2, we observe that, when the RGB sensor is
damaged, competing methods struggle to recognize objects
within the scene. In contrast, our model can still identify
most objects. This confirms the robustness of our approach
and highlights its potential for applications where one cam-
era in a dual-modality imaging device fails. As shown in
Table 5, we further test the performance of our method us-
ing accurately generated depth maps from Depth Anything
V2 [8]. This demonstrates that the proposed method can

(a) NYUDv2 dataset (b) MFNet dataset

Figure 1. The performance comparison in challenging conditions
on the NYUDv2 [6] and MFNet [2] datasets.
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Figure 2. Qualitative visual comparison with CMNeXt [10], and
DPLNet [1] in modality-incomplete scenarios.

effectively work even with less accurate modality informa-
tion, such as depth data generated by monocular depth esti-
mation methods, thereby enhancing the practical relevance
of the approach.

4. More Comparison Results

In Figs. 3, 4, 5, and 6, we showcase more comparison results
from NYUDv2 [6], MFNet [2], MCubeS [4], DeLiVER
[10], against the CMNext [10]. As observed, our approach
outperforms the competing method. Notably, our model ex-
cels in segmenting small objects in nighttime environments
(e.g., cars on the first three rows of Fig. 4) and demon-
strates superior accuracy in handling complex scenes and
textures (e.g., the first row of Fig. 3 and the last two rows
of Fig. 5), indicating the superior segmentation ability of
our model. As shown in Table 4, we test the performance
of our method using accurately generated depth maps from
DepthAnything. We will incorporate this in the revision.



RGB Depth GT CMNeXt Ours

RGB Depth GT CMNeXt Ours

Figure 3. We illustrate several examples from NYUDv2 [6], comparing our method against CMNeXt [10].

RGB Thermal GT CMNeXt Ours

RGB Thermal GT CMNeXt Ours

Figure 4. We illustrate several examples from MFNet [2], comparing our method against CMNeXt [10].



RGB Polarization GT CMNeXt Ours

RGB Polarization GT CMNeXt Ours

Figure 5. We illustrate several examples from MCubeS [4], comparing our method against CMNeXt [10].

RGB Event GT CMNeXt Ours

RGB Event GT CMNeXt Ours

Figure 6. We illustrate several examples from DeLiVER [10], comparing our method against CMNeXt [10].
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