
PhyS-EdiT: Physics-aware Semantic Image Editing with Text Description
Supplementary Material

Ziqi Cai1,2 Shuchen Weng3 Yifei Xia1,2 Boxin Shi1,2*

1State Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University
2National Engineering Research Center of Visual Technology, School of Computer Science, Peking University

3Beijing Academy of Artificial Intelligence

czq@stu.pku.edu.cn, shuchenweng@pku.edu.cn, yfxia@pku.edu.cn, shiboxin@pku.edu.cn

A. Implementation Details
Denoising networks. We initialize the networks Ulow and
Uhigh with pretrained weights from InstructPix2Pix [1]. Ulow
further incorporates a ControlNet [7], with weights initial-
ized from the baseline U-Net model. Following the protocol
in [6], we employ an auxiliary encoder. The encoded input
image is element-wise multiplied with physical conditions
before being fed into the network to enhance generalization.
Fusion network. The fusion network employs a Convo-
lutional Neural Network (CNN) as its backbone, operat-
ing directly in the latent space. This allows the model
to learn more diverse and disentangled representations for
both physical and semantic editing.
Data rendering. We render images using Blender 4.2 [2]
with the Cycles renderer at a resolution of 1024× 1024 and
a sample count of 64. During training, these images are
resized to 512 × 512. To ensure consistency, we normalize
the scenes such that the object is centered and fully visible.

B. Baseline Configurations
InstructPix2Pix (IP2P) [1]. We employ IP2P [1] as a
baseline for both material and semantic editing. We utilize
the official code release and pretrained weights. For mate-
rial editing, we adhere to the methodology in [4], providing
the following instructions to the model:
• Roughness: Make the {object} more/less shiny.
• Metallicity: Make the {object} more/less metallic.
• Albedo: Make the {object} more/less gray.
• Transparency: Make the {object} more/less transparent.
For semantic editing, we utilize prompts consistent with the
IP2P dataset [1].
Subias et al. [5]. We deploy the official code release and
pretrained weights from this model, which only supports the
adjustment of roughness and metallicity.
DiLightNet [6]. We utilize the official code release and
pretrained weights. The model supports lighting control,
but does not allow material editing, leading to variations in
the editing results based on the appearance seed.
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Stable Diffusion 3 [3]. We use the medium inpaint ver-
sion of Stable Diffusion 3 for semantic editing. To guide
the model towards the intended editing effects, we use the
editing instructions as described in IP2P [1].

C. Dataset Visualization
The PR-TIPS dataset includes pairwise images with varying
levels of roughness, metallicity, albedo, and transparency
under diverse lighting setups. To provide an overview of the
diversity and quality of our dataset, we present examples
of image-target pairs used in our experiments. Figure D
illustrates the variety of materials, lighting conditions, and
objects in the dataset.

D. Additional Results
D.1. Generalization

We present additional real-image results in Fig. A to show
our model’s resistance to overfitting.

Roughness↓ Metallic↓ Albedo↑ Transparency↑ Transparency↑ Relighting

In
pu

t
E

di
te

d

Figure A. Real-image results.

D.2. Retraining IP2P

We retrain IP2P [1] on our PR-TIPS dataset for material
editing. The results are shown in Fig. B.

Albedo↑. Metallic↑. Albedo↑.

Transparency↑. Roughness↓.

Input Ours IP2P GT Input Ours IP2P GT

Figure B. Comparison to retrained IP2P.
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D.3. Influence of Pre-trained Models

Pre-trained models are usually reliable but may struggle
in challenging scenarios like translucent objects or dark
scenes, causing minor deviations in physical edits. Exam-
ples of such failures are shown in Fig. C. Despite inaccura-
cies in low-level features, the high-level network maintains
semantic robustness.
Roughness↑. Transparency↑. Relighting. Albedo↑. (Real image, no GT)
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Figure C. Impact of on pretrained model results.

D.4. Additional Qualitative Results

We present the complete visualization of the Fig. 3 in Fig. E
and Fig. F. Additional comparison results are presented
in Fig. G and Fig. H. As observed, our method consistently
generates high-quality results.
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Transform the 
surface material into 
a highly reflective, 

metallic finish, 
resembling polished 

chrome.

Change the material 
to a plain, matte
ceramic finish, 

removing all metallic 
properties.

Gradually adjust the 
material’s opacity to 
make it see-through, 
revealing the inner 
layers and details.

Make the surface 
appear rougher and 
less smooth, diffusing 
light reflections for a 

more muted 
appearance.

Replace the camera’s 
original materials 

with a neutral, non-
detailed white
material while 
preserving the 

overall geometry.

Modify the material 
to enhance 

reflectivity, making 
the surface shinier
and more metallic.

Introduce a 
translucent quality 
to the surface of the 
sofa, allowing light

to pass through 
partially.

Adjust the material 
to make the football’s 
surface less diffuse, 

resulting in a 
polished and 

reflective finish.
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Figure D. Examples from our dataset, showcasing the editing prompts, input images, and the corresponding output target.

Figure E. The complete visualization for material editing and lighting editing, including input, condition, output, and ground truth.



Figure F. The complete visualization for semantic editing, including input, condition, output, and ground truth.



Figure G. Additional comparison results for material, lighting, and semantic editing (specific conditions omitted for clarity).



Figure H. Additional comparison results for material, lighting, and semantic editing (specific conditions omitted for clarity).
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