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In the supplementary material, Section A presents addi-
tional ablation studies, further validating the effectiveness
of other designs of SPMTrack and TMoE. In Section B,
we provide more comprehensive performance comparisons
between our SPMTrack and other excellent trackers. The
comparisons consist of success curves on both overall La-
SOT [6] test split and all challenging scenario subsets, along
with overall precision curves. And in Section C, we fur-
ther showcase the comparisons of tracking results of various
trackers in complex scenarios and present more qualitative
analyses of our method.

A. Further Analyses

A.1. Ablation Study on Target State Token
We employ a temporally propagated target state token to
store historical target states, which is utilized in the predic-
tion head for further adjustment and refinement of search
region features. In Table A.1 and Table A.2, we remove
the target state token and directly use the search region fea-
tures from the output of feature extraction network for pre-
diction in the prediction head. Table A.1 and Table A.2
present evaluation results on the GOT-10K [9] and Track-
ingNet [11] test splits, respectively. The results demonstrate
that the integration of target state tokens, while introducing
negligible additional parameters, improves performance on
both two datasets, with a more significant improvement ob-
served on TrackingNet.

Table A.1. Ablation study on whether adopt target state token.
Results are evaluated on GOT-10K [9] test split.

model variants #Params(M) AO (%) SR0.5(%) SR0.75(%)
SPMTrack-B 115.331 76.5 85.9 76.3

w/o target state token 115.329 76.3 85.6 75.9

∗Corresponding author.

Table A.2. Ablation study on whether adopt target state token.
Results are evaluated on TrackingNet [11] test split.

model variants #Params(M) AUC (%) PNorm(%) P (%)

SPMTrack-B 115.331 86.1 90.2 85.6
w/o target state token 115.329 85.7 89.9 85.1

A.2. Ablation Study on Token Type Embedding
In SPMTrack, we add not only positional embedding but
also token type embeddings to the input of the feature ex-
traction network to further enhance the token information.
The additional parameter count and computational over-
head introduced by the token type embeddings are negli-
gible.

In Table A.3, we investigate the impact of introduc-
ing different token type embeddings on the performance
of SPMTrack-B. Comparing the first row and the third row
in Table A.3, adding three types of token type embeddings
leads to a performance improvement. Comparing the first
row and second row, we find that when the type embedding
corresponding to the target foreground tokens is not intro-
duced, which means all tokens in the reference frames use
the same type embedding, there are no performance gains
observed. The results indicate that the target foreground
token type embedding is the most crucial among the three
categories, as it enhances the ability of the tracker to dis-
criminate target foreground regions, thereby improving per-
formance.

Table A.3. Ablation study on different token type embeddings,
where TEo, TEb and TES represent the type embeddings of the
foreground region tokens, background region tokens in reference
frames and the search region tokens, respectively.

# TEo TEb TES AO (%) SR0.5(%) SR0.75(%)
1 ✘ ✘ ✘ 76.2 85.6 75.8
2 ✘ ✔ ✔ 76.2 85.5 76.0
3 ✔ ✔ ✔ 76.5 85.9 76.3
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Figure A.1. Several conventional MoE architectural designs, where MoE modules exclusively replace feed-forward network (FFN) layers
in the original Transformer Block, while linear layers in multi-head self-attention are fine-tuned using LoRA [8]. Zoom in for better view.

A.3. Ablation Study on Different Pre-trained Mod-
els

In this paper, we select DINOv2 [12] as the pre-trained
model. In Table A.4, we investigate the impact of differ-
ent pre-trained models on the final performance. All ex-
periments are conducted based on SPMTrack-B, with pre-
trained models based on the ViT-B [5] architecture. It is
worth noting that for pre-trained models with an image
patch size of 16, we use a reference frame size of 192×192
and a search region size of 384 × 384. As shown in Ta-
ble A.4, experimental results demonstrate that SPMTrack
maintains consistent performance on GOT-10K regardless
of the choice of pre-trained model, indicating the robustness
and the generalization ability of our approach. Eventually,
in order to make a fair comparison with LoRAT [10] that
also employs parameter-efficient fine-tuning, we still select
DINOv2 [12] as the pre-trained model.

Table A.4. Ablation study on different pre-trained models. Results
are evaluated on GOT-10K test split.

Pretrained Models Patch Size AO (%) SR0.5(%) SR0.75(%)
DINOv2 [12] 14 76.5 85.9 76.3

MAE [7] 16 76.3 87.0 75.1
DropMAE [14] 16 76.6 87.7 74.0

A.4. Ablation Study on MLP Prediction Head
In SPMTrack, in order to make a fair comparison with
LoRAT [10], we also adopt a fully MLP-based predic-
tion head. However, this does not represent our opti-

mal configuration. As demonstrated in Table A.5, we re-
place the MLP prediction head with the convolution-based
prediction head used in previous trackers like OSTrack
[16]. Although the MLP prediction head has fewer pa-
rameters, the overall model parameter difference is mini-
mal, and the convolution-based head achieves significantly
superior performance. In contrast to LoRAT, which fails
completely under parameter-efficient fine-tuning when us-
ing convolution-based heads, our method achieves even bet-
ter performance with convolution-based heads, which fur-
ther demonstrates the generality of our proposed TMoE
for parameter-efficient fine-tuning and also further demon-
strates the potential for performance improvement in SPM-
Track.

Table A.5. Ablation study on MLP-based prediction head and
convolutional-based prediction head. Results are evaluated on
GOT-10K test split.

Prediction Head #Params(M) AO (%) SR0.5(%) SR0.75(%)
MLP Head 2.37 76.5 85.9 76.3

OSTrack [16] Conv Head 6.47 76.8 86.4 77.0

A.5. More Comparisons with Conventional MoE
In Table 7 of the main manuscript, we compare our method
with conventional MoE in terms of parameter count and per-
formance on LaSOT, the conventional MoE structure in Ta-
ble 7 is illustrated in Figure A.1(a). Additionally, as shown
in Figure A.1, we explore various alternative MoE struc-
tures. Figure A.1(b) shows a modification of the architec-
ture in Figure A.1(a) where we replace the frozen shared
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Figure A.2. Comparisons of our proposed SPMTrack with other excellent trackers in the success curve on LaSOT test split, which includes
eleven challenging scenarios such as Low Resolution, Motion Blur, Scale Variation, etc. We also provide the comparisons of the success
and precision curves across the entire LaSOT test split. Zoom in for better view.

expert with a learnable routed expert and initialize all five
routed experts with corresponding FFN weights from the
pre-trained model. Figure A.1(c) extends the design in Fig-
ure A.1(a) by freezing all experts and fine-tuning each ex-

pert using LoRA [8]. In Figure A.1(d), we adopt the way of
sparsely activating experts with top-k routing scores on the
basis of Figure A.1(a). The experimental results of these
different MoE architectures on LaSOT test split are pre-
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(a) Qualitative results of three methods when the targets undergo large deformations.
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(b) Qualitative results of three methods when the targets suffer from partial occlusions.
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(c) Qualitative results of three methods when the targets have large scale variations.

Figure A.3. This figure presents a visual comparison among our proposed SPMTrack-B, LoRAT-B [10] and HIPTrack [2] in the challenges
of target deformation, partial occlusion and scale variation. It demonstrates that our method achieves more effective and accurate tracking
in the aforementioned challenging scenarios. Zoom in for better view.
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Figure A.4. Visualization of the search region feature adjustment weights U and the corresponding predicted bounding boxes.

sented in Table A.6.

As shown in Table A.6, in row 1, the MoE comprises
one shared expert and four routed experts, with all experts
participating in computation, hence the expert count is 1+4
as well as the activated expert count. Row 3 follows the
same rule. In row 2, there are only five routed experts, and
all of them participate in the computation. In row 4, the
MoE includes a total of one shared expert and four routed
experts, but only the routed experts with the top-2 routing
scores are activated, so the number of activated experts is
1 + 2. In row 5, the MoE includes a total of one shared
experts and eight routed experts, and the routed experts with

the top-4 routing scores are activated.

Table A.6 demonstrates that TMoE achieves superior
performance compared to all conventional MoE approaches
that are only applied to replace FFN layers, while maintain-
ing significantly lower total parameters (all conventional
MoE variants exceed 300M parameters). At the same time,
comparing row 2 with other rows, we observe that preserve
pre-trained weights in MoE leads to substantially improved
performance. This explains why row 3 achieves opti-
mal performance among all conventional MoE approaches.
Comparing rows 1, 4, and 5, we find that increasing the
overall parameter count or the number of activated experts



results in only marginal performance gains, further validat-
ing the effectiveness of our TMoE design.

However, in the field of natural language processing,
sparsely activated MoE has become mainstream. But
sparsely activated MoE requires more engineering opti-
mizations. Due to the limitations of time and resources, we
have not further explored the performance of TMoE under
sparse activation. We also hope that this work can inspire
other researchers to conduct related explorations in the field
of visual tracking.

Table A.6. Performance comparison between different conven-
tional MoE approaches and TMoE. The number of experts is rep-
resented in the form of a + b, where a represents shared experts
and b represents routed experts. All results are evaluated on La-
SOT test split.

MoE #MLP #Activated
AUC (%)PNorm(%)P (%)Variants Experts Experts

Figure A.1(a) 1+4 1+4 73.4 82.6 79.8
Figure A.1(b) 5 5 72.7 81.5 78.7
Figure A.1(c) 1+4 1+4 74.4 83.4 80.6

Figure A.1(d)
1+4 1+2 73.3 82.0 79.4
1+8 1+4 73.8 82.8 79.9

TMoE - - 74.9 84.0 81.7

B. More Detailed Results in Different Attribute
Scenes on LaSOT

In Figure A.2, we provide a more detailed comparison of
our method with other current state-of-the-art trackers Lo-
RAT [10], ODTrack [17], ARTrackV2 [1], AQATrack [15],
ARTrack [13], ROMTrack [3] and SeqTrack [4] across var-
ious challenging scenario subsets in LaSOT [6]. Figure
A.2 presents detailed success curves and AUC scores across
individual subsets, along with the success and precision
curves on the entire LaSOT test split. The results demon-
strate that SPMTrack-B significantly outperforms current
state-of-the-art approaches both overall and across the vast
majority of subsets.

C. More Qualitative Results
C.1. Tracking Results
In order to visually highlight the advantages of our method
over existing approaches in challenging scenarios, we pro-
vide additional visualization results in Figure A.3. All
videos are from the test split of LaSOT. We compare our
proposed SPMTrack-B with HIPTrack [2] and LoRAT-B
[10] in terms of performance when the target undergoes de-
formation, occlusion, and scale variation. All the selected
videos are challenging, as described below:
• Figure A.3(a) demonstrates the tracking results of three

methods when the target suffers deformations.

• Figure A.3(b) demonstrates the tracking results of three
methods when the target suffers partial occlusions.

• Figure A.3(c) demonstrates the tracking results of three
methods when the target suffers scale variations.

C.2. Visualization of Search Region Feature Adjust-
ment Weight

In the prediction head of SPMTrack, we compute matrix
multiplication between the output H ′ corresponding to tar-
get state token and the output search region feature X ′ to
obtain weight U . The obtained weight U contains the his-
torical state information of the target and is used to further
adjust and refine the output search region feature X ′. In
Figure A.4, we visualize the weight U . The visualization
results demonstrate that the adjustment weight U can sig-
nificantly distinguish between the target foreground region
and irrelevant background regions. Moreover, the heatmaps
exhibit patterns resembling bounding boxes, with substan-
tially higher weights inside the “bounding box”. This
further enhances the features at potential target locations,
thereby improving the foreground-background discrimina-
tion capability of the search region features.
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