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Appendix

A. Algorithm

Alg. 1 summarizes FEDGLOSS, using as an example SGD or SAM as local optimizers, differently highlighted. The comment
colors replicate those of Fig. 3.

Algorithm 1 FEDGLOSS with SAM or SGD as local optimizers

1: Input: Global modelwww, clients C, rounds T , local iterations E, clients’ learning rate η, clients’ SAM neighborhood size ρl, FEDGLOSS
neighborhood size ρ, Lagrangian hyperparameter β.

2: Initialize: www0, σ0 = σk = 0, ∆0
www = 0.

3: for each round t ∈ [1, T ] do
4: ϵ̃ϵϵt(www) = ρ

∆t−1
www

∥∆t−1
www ∥2

▷ Global perturbation with previous pseudo-grad

5: w̃wwt = wwwt + ϵ̃ϵϵt(www) ▷ Server-side approximated FEDGLOSS ascent step
6: Randomly select a subset of clients Ct ⊂ C
7: for each client k ∈ Ct in parallel do
8: wwwk,0 = w̃wwt ▷ Initialize local model with perturbed global model w̃wwt

9: Set iteration counter i = 1
10: for each epoch e ∈ [1, E] do
11: for each batch B ∈ Dk do
12: gk,i = ∇fB(wwwk,i−1) ▷ Local SGD gradient

13: ϵ̂k,i = ρl
gk,i

∥gk,i∥2
▷ SAM local perturbation

14: gk,i = ∇fB(wwwk,i−1 +ϵ̂k,i) ▷ Local sharpness-aware gradient
15: wwwk,i ← wwwk,i−1−η[gk,i − σk + (wwwk,i−1−wwwk,0)/β] ▷ Local update with ADMM
16: i← i+ 1
17: end for
18: end for
19: σk ← σk − (wwwk,E −w̃wwt)/β ▷ Update local dual variable
20: Send back to the server the local updated model wwwt

k = wwwk,E

21: end for
22: σt+1 = σt − 1

β|C|
∑

k∈C(www
t
k −w̃wwt) ▷ Update global dual variable

23: ∆̃t
www =

∑
k∈Ct

Nk
N

(w̃wwt −wwwt
k) ▷ Global pseudo-gradient

24: wwwt+1 = wwwt−∆̃t
www − βσt+1 ▷ FEDGLOSS descent step w/ pseudo-grad using ADMM

25: end for

B. The Benefits on FEDGLOSS

B.1. Achieving Consistency on Local and Global Sharpness with FedGloSS

This section completes the analyses presented in Secs. 4 and 6.2, showing how FEDGLOSS guides towards consistent local
and global flat loss landscapes. Fig. 10 extends Figs. 4a and 4b from the main paper with the 3 remaining clients (out of
5) selected in the last round, comparing the behavior of clients’ models trained with FEDGLOSS from the local and global
perspectives. These results highlight the effectiveness of FEDGLOSS in achieving local models with consistent local-global
behavior. Indeed, these models end up in flat regions both in local and global loss landscapes. The comparison with FEDSAM
(net surface) further demonstrates the effectiveness of using our global flatness-aware approach.

Fig. 11 instead extends Figs. 4c and 4d, offering a comparative analysis of FEDSMOO’s clients’ models w.r.t. FEDGLOSS
(net landscape). The local solutions found by FEDGLOSS achieve flatter, better (i.e., lower loss) and more consistent con-
vergence points in the global loss landscape w.r.t. our main competitor FEDSMOO.



(a) Local model trained
on class bear with FEDGLOSS

(b) Local model trained on
class skyscraper with FEDGLOSS

(c) Local model trained
on class possum with FEDGLOSS

Figure 10. Global vs. local perspective on FEDGLOSS. CIFAR100 α = 0 with SAM as local optimizer @ 20k rounds on CNN. (a) - (c):
Local models trained on one class, tested on the local (“Local loss”) or global dataset (“Global loss”). Corresponding global perspective
of local model trained with FEDSAM (net) added as reference.

(a) Local model trained
on class bear with FEDGLOSS

(b) Local model trained on
class skyscraper with FEDGLOSS

(c) Local model trained
on class possum with FEDGLOSS

Figure 11. Global vs. local perspective on FEDSMOO. CIFAR100 α = 0 with SAM as local optimizer @ 20k rounds on CNN. (a) - (c):
Local models trained on one class, tested on the local (“Local loss”) or global dataset (“Global loss”). Corresponding global perspective
of local model trained with FEDGLOSS (net) added as reference.
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Figure 12. Visualization of the loss landscapes of the CNN trained with FEDGLOSS (net) and the de-facto standard optimization algorithm
in FL FEDAVG (solid). Comparison with varying degrees of heterogeneity on CIFAR10 (left) and CIFAR100 (right). FEDGLOSS
consistently achieves flatter minima and lower loss values in the global loss landscape.

B.2. Achieving Flatter Global Minima

FEDGLOSS vs. FEDAVG, FEDSAM, FEDSMOO. Fig. 12 compares the loss landscapes of global models trained with
FEDGLOSS and FEDAVG, showing how the former consistently achieves flatter minima and lower loss values in the global
loss landscapes. This confirms the behaviors already appreciated in Fig. 6. In addition, Fig. 13 shows the global loss surfaces
of FEDGLOSS’ solutions against models trained with FEDSAM and FEDSMOO. These plots extend Fig. 6 with the less
heterogeneous scenarios α = 0.05 for CIFAR10 and α = 0.5 on CIFAR100. They confirm FEDGLOSS’ effectiveness in
reaching flatter and lower-loss solutions with respect to its main direct competitors.
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Figure 13. Visualization of the loss landscapes of the CNN trained with FEDGLOSS (net) and FEDSAM or FEDSMOO (solid). Compar-
ison with α = 0.05 CIFAR10 (left) and α = 0.5 CIFAR100 (right) extending Fig. 6. FEDGLOSS consistently achieves flatter minima
and lower loss values in the global loss landscape.
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Figure 14. Visualization of loss landscapes of the ResNet18 trained with FEDGLOSS (net) and FEDAVG, or FEDSAM or FEDSMOO
(solid). Comparison with CIFAR10 α = 0.05 (a-c) and CIFAR100 α = 0.5 (d-f ). FEDGLOSS achieves flatter and lower-loss regions
in the global landscape.

FEDGLOSS on ResNet18. Fig. 14 extends Fig. 6 from the main paper and shows the flatter loss landscapes reached by
FEDGLOSS when using ResNet18 on CIFAR10 and CIFAR100.

Hessian Eigenvalues. Tab. 9 reports the values of the maximum Hessian eigenvalues, as already shown in Fig. 7 in the main
paper. First, as expected, we note that SAM-based methods achieve flatter minima w.r.t. the counterpart. Notably, our main
competitor FEDSMOO presents higher sharpness than FEDSAM in the simpler CIFAR10, regardless of the data distribution.
In addition, FEDGLOSS with local SAM achieves the lowest sharpness (i.e., lowest λ1) on all configurations, outperforming
the state of the art and, specifically, all sharpness-aware methods.

Table 9. FEDGLOSS vs. the state of the art, distinguished by local optimizer - SGD (top) and SAM (bottom). Comparison in terms of
communication cost and maximum Hessian eigenvalue λ1. Best results in bold. Model: CNN.

Method
CIFAR10 CIFAR100

Comm. α = 0 α = 0.05 α = 0 α = 0.5
Cost λ1(↓) λ1(↓) λ1(↓) λ1(↓)

C
lie

nt
SG

D FEDAVG 1× 66.23 ± 0.50 71.14 ± 4.07 66.30 ± 3.08 68.77 ± 0.96
FEDPROX 1× 66.19 ± 0.52 71.41 ± 4.40 66.34 ± 3.75 68.63 ± 1.37
FEDDYN 1× 63.94 ± 4.41 71.44 ± 8.73 - -
SCAFFOLD 2× 166.54 ± 6.93 180.51 ± 30.08 - 120.01 ± 0.76
FEDGLOSS 1× 58.26 ± 3.49 56.28 ± 4.19 96.01 ± 9.00 107.35 ± 7.5

C
lie

nt
SA

M

FEDSAM 1× 10.35 ± 0.07 9.43 ± 0.28 58.38 ± 2.93 57.54 ± 1.21
FEDDYN 1× 10.04 ± 5.38 6.58 ± 0.20 - -
FEDSPEED 1× 10.92 ± 0.17 9.97 ± 0.12 58.23 ± 3.18 58.00 ± 1.86
FEDGAMMA 2× 4.79 ± 0.20 4.55 ± 0.20 - 99.86 ± 6.74
FEDSMOO 2× 15.37 ± 1.67 12.57 ± 0.56 28.43 ± 1.97 29.23 ± 0.17
FEDGLOSS 1× 2.03 ± 0.05 1.93 ± 0.03 17.18 ± 0.97 16.22 ± 0.35

B.3. Increasing Convergence Speed
Figs. 15 and 16 show the accuracy trends of FEDGLOSS compared to state-of-the-art methods for heterogeneous FL on
CIFAR10 and CIFAR100 respectively. For a clearer understanding, we distinguish between SAM-based and SGD-based
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(c) α = 0.05 SAM
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Figure 15. CIFAR10 with varying degrees of heterogeneity (α ∈ {0, 0.05}). Results of centralized runs (dashed lines) added as reference.
Comparison of FEDGLOSS with state-of-the-art approaches, distinguished in SAM-based methods (a, c) and SGD-based ones (b, d).
FEDGLOSS consistently achieves the best performance. Model: CNN.
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(c) α = 0.5 SAM
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Figure 16. CIFAR100 with varying degrees of heterogeneity (α ∈ {0, 0.5}) with CNN. Results of centralized runs (dashed lines) added as
reference. Comparison of FEDGLOSS with state-of-the-art approaches, distinguished in SAM-based methods (a, c) and SGD-based ones
(b, d). FEDGLOSS consistently achieves the best performance.
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(a) CIFAR100 α = 0.5 SAM
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(b) CIFAR100 α = 0.5 SGD
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Figure 17. Accuracy trends with ResNet18 on CIFAR100 (left) and CIFAR10 (right). Comparison of FEDGLOSS with state-of-the-art ap-
proaches, distinguished in SAM-based methods (a, c) and SGD-based ones (b, d). FEDGLOSS consistently achieves the best performance,
both in terms of final accuracy and convergence speed.

methods depending on the used local optimizer. For a fair comparison, we report FEDSMOO with and without the scheduling
of ρ (+wp in the figure). For additional details on the scheduling, refer to App. C. FEDGLOSS consistently achieves the
best performances and convergence speedup in each group. In addition, we remind that FEDGLOSS communicates half
the number of bits at each round w.r.t. FEDSMOO. Fig. 17 reports the results obtained with ResNet18 on both datasets:
FEDGLOSS consistently achieves the best speed of convergence and final accuracy, with both SAM and SGD as CLIENTOPT.

B.4. Effectiveness in Multiple Scenarios and with Several Model Architectures

As already shown in Sec. 6, FEDGLOSS outperforms the state of the art in terms of speed of convergence, final performance
in accuracy, flatness of the solution and communication efficiency. This remains true across multiple datasets (CIFAR100,
CIFAR10, LANDMARKS-USER-160K) and model architectures (CNN, ResNet18, MobileNetv2). The main paper focuses
on results in more challenging heterogeneous FL scenarios. The next paragraphs discuss the behavior of FEDGLOSS in
increasingly more homogeneous settings.



Table 10. FEDGLOSS against SOTA algorithms in increasingly more homogeneous settings on CIFAR10, compared in terms of accuracy
(%) and maximum Hessian eigenvalue λ1. Best results in bold. Model: CNN.

Method α = 1 α = 5 α = 10
Accuracy λ1 Accuracy λ1 Accuracy λ1

SG
D

-b
as

ed
FEDAVG 76.4± 0.2 68.2± 2.7 83.7± 0.4 63.3± 2.9 82.4± 0.1 70.6± 0.3
FEDPROX 76.3± 0.2 69.5± 0.9 83.8± 0.4 63.0± 3.6 82.4± 0.2 71.8± 2.0
FEDDYN 77.1± 0.1 64.5± 4.9 82.3± 0.3 48.3± 1.6 82.2± 0.1 58.1± 3.5
SCAFFOLD 79.6± 0.1 62.7± 2.7 84.5 ± 0.2 47.4± 3.0 83.8± 0.2 58.4± 2.9
FEDGLOSS 80.31 ± 0.4 40.0 ± 5.2 83.5± 0.2 8.5 ± 0.3 84.8 ± 0.3 41.4 ± 2.2

SA
M

-b
as

ed

FEDSAM 77.7± 0.2 25.6± 0.02 83.5± 0.1 19.7± 0.1 83.2± 0.2 22.1± 1.4
FEDDYN 80.5± 0.2 21.0± 0.8 82.9± 0.4 16.3± 0.5 84.1± 0.1 17.3± 0.3
FEDSPEED 76.2± 0.5 8.3± 0.1 83.6± 0.1 20.3± 0.5 78.2± 0.2 8.6± 0.2
FEDGAMMA 70.3± 1.0 4.8± 0.2 83.5± 0.1 16.0± 0.6 76.4± 0.3 6.4± 0.1
FEDSMOO 85.2± 0.2 9.8± 0.2 86.2± 0.2 6.0± 0.2 86.8± 0.3 6.2± 0.2
FEDGLOSS 85.6 ± 0.2 2.0 ± 0.04 86.9 ± 0.2 4.5 ± 0.02 87.1 ± 0.1 4.1 ± 0.03

FEDGLOSS in moderately heterogeneous settings. The choice of the Dirichlet’s concentration parameter α in the main
text aligns with the FL literature [1, 4, 20, 53, 54], where α < 1 is commonly used to evaluate challenging settings. More-
over, for α > 0.6, differences between methods become less pronounced [61]. To further analyze the impact of varying
heterogeneity levels on FEDGLOSS, we consider α ∈ {1, 5, 10} on CIFAR10. Tab. 10 presents a comparison of FEDGLOSS
against several state-of-the-art FL algorithms. Consistently, FEDGLOSS achieves the highest accuracy across all tested sce-
narios, except for α = 5 with SGD as the local optimizer, where it is outperformed by SCAFFOLD. Notably, even in this case,
FEDGLOSS exhibits the lowest maximum Hessian eigenvalue, highlighting its stability.

FEDGLOSS in homogeneous settings. Tab. 11 evaluates FEDGLOSS against the main methods FEDAVG, FEDSAM,
FEDDYN and FEDSMOO in homogeneous FL settings. Here, client gradients are naturally more aligned due to reduced
client drift [26]. We thus test FEDGLOSS with and without ADMM for global consistency. As expected, FEDGLOSS
achieves similar accuracy with or without ADMM, particularly when using SAM as the local optimizer. However, ADMM
facilitates convergence to flatter minima (evidenced by lower λ1 values) by aligning local and global convergence points.
Notably, FEDGLOSS achieves the flattest minima (lowest λ1) across both datasets, and the best accuracy on the more complex
CIFAR100. While FEDSMOO achieves slightly higher accuracy on CIFAR10, FEDGLOSS finds a flatter minimum and
achieves competitive accuracy with significantly lower communication costs (halved).

Table 11. FEDGLOSS against SOTA FL methods on homogeneous CIFAR settings, compared in terms of communication costs, accuracy
(%) and maximum Hessian eigenvalue λ1. Best result in bold and second best underlined. Model: CNN.

Method Comm. ADMM CIFAR10 α = 100 CIFAR100 α = 1000
Cost Accuracy λ1 Accuracy λ1

FEDAVG 1× ✗ 84.0 68.4 50.1 49.4
FEDSAM 1× ✗ 84.7 36.2 53.4 32.6
FEDDYN (SGD) 1× ✓ 83.8 47.8 51.9 91.7
FEDDYN (SAM) 1× ✓ 84.5 27.9 52.5 46.0
FEDSMOO 2× ✓ 85.1 6.4 53.9 24.6

FEDGLOSS (SGD) 1× ✗ 84.0 67.7 50.5 50.8
1× ✓ 83.1 7.1 51.7 47.9

FEDGLOSS (SAM) 1× ✗ 84.8 36.2 55.8 13.9
1× ✓ 84.8 2.8 55.7 11.8

B.5. Reducing Communication Costs
Analysis on communication cost. Tab. 12 extends the analysis presented in Sec. 6.3.4 by evaluating the communication
costs across all scenarios considered in this work. Notably, since FEDGLOSS maintains the per-round communication cost of
FEDAVG, it remains advantageous even when matching the convergence speed of the best-performing algorithm (FEDSMOO),
due to its halved communication costs.



Table 12. Communication costs comparison w.r.t. FEDAVG. “-” for not reached accuracy, “✗” for non-convergence.

Method

CNN ResNet18 MobileNetv2
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 LANDMARKS-USER-160K

α = 0 α = 0.05 α = 0 α = 0.5 α = 0.05 α = 0.5
Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost

SG
D

-b
as

ed

FEDAVG 10k (1×) 1B 10k (1×) 1B 20k (1×) 1B 20k (1×) 1B 10k (1×) 1B 10k (1×) 1B 1.3k (1×) 1B
FEDPROX 7.6k (1.3×) 0.8B 7.9k (1.3×) 0.8B 18.7k (1.1×) 0.9B 18.6k (1.1×) 0.9B 8.8k (1.1×) 0.9B 8.3k(1.2×) 0.8B - -
FEDDYN 2k (5×) 0.2B 1.9k (5×) 0.2B ✗ ✗ - - 3.5k (2.9×) 0.4B - -
SCAFFOLD - - - - - - - - - - 8.9k (1.1×) 1.8B ✗
FEDGLOSS 3.4k (2.9×) 0.3B 3.8k (2.6×) 0.4B 5k (4×) 0.3B 4.7k (4.3×) 0.2B 2.4k (4.2×) 0.2B 1.9k (5.3×) 0.2B - -

SA
M

-b
as

ed

FEDSAM 6.3k (1.6×) 0.6B 7.8k (1.3×) 0.8B 18.3k (1.1×) 0.9B 16.3k (1.2×) 0.8B 9.2k (1.1×) 0.9B 7.8k (1.3×) 0.8B 1.3k (1×) 1B
FEDDYN 3k (3.3×) 0.3B 4.2k (2.4×) 0.4B ✗ ✗ 4.1k (2.4×) 0.4B 3.5k (2.9×) 0.4B - -
FEDSPEED 6.3k (1.6×) 0.6B 6.9k (1.4×) 0.7B 18.3k (1.1×) 0.9B 15.7k (1.3×) 0.8B 8.3k (1.2×) 0.8B 8.3k (1.2×) 0.8B 1.3k (1×) 1B
FEDGAMMA - - - - - - - - 9.3k (1.1×) 1.9B 8.1k (1.2×) 1.6B ✗
FEDSMOO 1.9k (5.3×) 0.4B 2.2k (4.5×) 0.4B 4.5k (4.4×) 0.5B 6.5k (3.1×) 0.7B 2.4k (4.2×) 0.5B 2.3k (4.3×) 0.5B 200 (6.5×) 0.3B
FEDGLOSS 2.2k (4.5×) 0.2B 2.2k (4.5×) 0.2B 6.3k (3.2×) 0.3B 5.2k (3.8×) 0.3B 2.4k (4.2×) 0.2B 1.9k (5.3×) 0.2B 200 (6.5×) 0.2B
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Figure 18. Accuracy trends of FEDGLOSS vs. NAIVEFEDGLOSS. The comparison includes the centralized upper bounds of SAM and
S̃AM (the adaptation of FEDGLOSS’ strategy to the centralized scenario). CNN on CIFAR10 and CIFAR100 with varying heterogeneity
degree (α). NAIVEFEDGLOSS is≈ 1.1× faster than its efficient alternative FEDGLOSS in CIFAR100, while FEDGLOSS shows increased
convergence speed after ≈ 25% of training rounds in CIFAR10. However, both methods reach the same accuracy at the of training. These
results motivate the choice of FEDGLOSS over NAIVEFEDGLOSS.
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Figure 19. Loss barriers resulting from interpolating NAIVEFEDGLOSS and FEDGLOSS’ models, which are found in the same basin.
CIFAR datasets, CNN. Details on the computation in App. D.2.

FEDGLOSS vs. NAIVEFEDGLOSS. Fig. 18 deepens the comparison between FEDGLOSS and its baseline NAIVEFED-
GLOSS, discussed in Sec. 6.4. In particular, this plot reports the accuracy trends of the two methods, showing that
NAIVEFEDGLOSS is slightly faster (≈ 1.1×) than FEDGLOSS in CIFAR100, while FEDGLOSS surpasses the speed of
the baseline after ≈ 25% of training in CIFAR10. However, both methods reach the same accuracy at the of training. In
addition, it is to be noted that FEDGLOSS halves the communication cost w.r.t. NAIVEFEDGLOSS by transmitting half
the number of bits at each round, as it eliminates the need to invoke the clients twice to compute the updates. Lastly, our
sharpness approximation does not steer the optimization path: models trained with FEDGLOSS and NAIVEFEDGLOSS end
up in the same basin (no loss barrier), with similar flatness (Fig. 19). These insights further support our choice of the efficient
strategy of FEDGLOSS over NAIVEFEDGLOSS.

Convergence speed. Since all methods are compared over a fixed amount of communication rounds, higher final accuracy
implies faster convergence. Since FEDGLOSS consistently outperforms the other state-of-the-art algorithms taken into
account, it is guaranteed to converge faster, as also shown in the accuracy trends (Figs. 15 to 17).



B.6. The Impact of Server-side ρs

Fig. 20 analyzes the impact of ρs on the performance of the global model, both in terms of accuracy (Fig. 20a) and flatness of
the solution (Fig. 20b). In details, Fig. 20a compares the accuracy of the global model trained on CIFAR100 when varying the
model architecture (CNN vs. ResNet18) and the data heterogeneity (α = 0 vs. α = 0.5). In all the configurations, we note
that a smaller value of ρs usually leads to the best results. Fig. 20b instead focuses on the CNN in the most heterogeneous
setting (α = 0) and compares the reached accuracy with the corresponding maximum Hessian eigenvalue λ1 when varying
ρs. A larger server-side ρs corresponds to a smaller λ1, i.e., a flatter region in the global loss landscape.
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Figure 20. CIFAR100. (a): Accuracy (%) of FEDGLOSS when varying the server-side SAM ρs, with different heterogeneity and architec-
ture (CNN with α = 0 and ResNet18 with α = 0.5). Smaller values of ρs lead to better performances. (b): FEDGLOSS ρs vs. maximum
Hessian eigenvalue λ1 on CNN with α = 0. Larger values of ρs lead to lower eigenvalues with minimum loss in accuracy.

C. Implementation Details
This section delves into a comprehensive description of the datasets and models utilized throughout this paper, specifying the
Deep Learning framework and the hardware employed (App. C.1). Additionally, we present the area of the hyper-parameters’
space explored during the fine-tuning process in order to yield optimal results (App. C.2).

C.1. Datasets and Models
Tab. 13 provides a comprehensive overview of each dataset’s general statistics. This includes the number of training clients
participating in the process and the total number of samples used to construct both the training and test sets.

C.1.1. CIFAR10 and CIFAR100
We adapted these two well-known image classification datasets to the FL scenario by replicating the splits among clients
proposed by [19]. Both datasets are split evenly among 100 clients, thus each of them has access to 500 data samples. This
partitioning is performed according to a Latent Dirichlet Allocation (LDA) on the labels. In practice, each local dataset
follows a multinomial distribution drawn according to a symmetric Dirichlet distribution with concentration parameter α.
The higher the value of this parameter is, the more the local datasets resemble a homogeneous scenario, in the limit case
α = 0 each client has access to one only class of images. In our experiments we tested α ∈ {0, 0.05, 1, 5, 10, 100} and
α ∈ {0, 0.5, 1000} for CIFAR10 and CIFAR100, respectively. Our choice of α aligns with FL literature [1, 4, 20, 53, 54],
where α < 1 is standard for testing challenging settings. Also, for α > 0.6, method differences are less apparent [61].
Figs. 21a and 21b show how data is distributed across clients in all the experimental settings for these two datasets. Both
datasets are pre-processed by applying random crops and random horizontal flips.

Table 13. Datasets’ description with their general statistics on the size and number of clients.

Dataset Train clients Train samples Test samples

CIFAR10 100 50,000 10,000
CIFAR100 100 50,000 10,000
LANDMARKS-USER-160K 1262 164,172 19,526
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Figure 21. CIFAR10 (left) and CIFAR100 (right) data distribution across clients with the heterogeneity levels tested in the experiments.
On top of each chart we report the average number of classes seen by each client.

Models. We trained a Convolutional Neural Network (CNN) inspired by the LeNet-5 architecture [30], as proposed by [20].
The network comprises two 64-channels convolutional layers, both using 5 × 5 kernels and followed by 2 × 2 max-pooling
layers. This is succeeded by two fully-connected layers with 384 and 192 units, respectively. The final output layer is adapted
to the specific number of classes in the dataset.

To explore deeper and more expressive architectures, we also trained a ResNet18 [16] on CIFAR100 with α = 0.5 and
CIFAR10 with α = 0.05. We replaced the standard Batch Normalization layers [21] with Group Normalization layers [59]
due to their demonstrated effectiveness in handling skewed data distributions in FL [18]. We carried out the experiments with
the CNN model using PyTorch [43] and the ResNet18 ones using FedJAX [48].

C.1.2. LANDMARKS-USER-160K

To achieve a comprehensive understanding of the efficacy of the proposed method, a thorough analysis was undertaken
utilizing large-scale real-world datasets. Specifically, we use the LANDMARKS-USER-160K dataset [20], a repository en-
compassing 164,172 images depicting 2028 distinct landmarks, distributed among 1262 clients.

Models. The model employed for training is a MobileNetV2 [20, 50], replacing batch normalization with group normaliza-
tion layers and pre-trained on ImageNet [8]. The tests on this dataset were carried out on a cluster of NVIDIA A100 40GB,
using our FedJAX codebase.

C.2. Hyperparameters
Grid search. In Tab. 14 we report the training hyperparameters associated to each dataset and model pairing, while Tab. 15
summarizes the hyper-parameters search grid tested for each method (in bold the chosen ones). All runs are averaged over 3
seeds. In addition, following previous works [1, 4, 5], we report the averaged accuracy of the last 100 rounds to reduce the
noise typical of heterogeneous FL settings.

Local hyperparameters. As for local hyperparameters, we tested FEDGLOSS’ robustness to E = 2 and ηl = 0.001
on CIFAR10 with α = 0. A smaller ηl had the greatest impact, with FEDAVG and FEDSAM losing 45% and 77% of their
performance (more local steps degrade performance in heterogeneous settings), respectively. Notably, FEDGLOSS loses only
29%. We attribute this to the pseudo-gradient consistently pointing toward higher-loss regions, ensuring a reliable ascent step
approximation regardless of local hyperparameters.

Scheduling of ρ. While running our experiments on FEDGLOSS, we noticed that a larger value of local ρ allowed to reach
the best final accuracy, while a smaller ρ achieved faster convergence in the initial training stages. Following this insight, we
schedule the value of ρ for Ts rounds as

ρ(t) =

{
ρ0 + (ρ−ρ0)/Ts · t if t ≤ Ts

ρ otherwise,

starting from the value ρ0 = 0.001.

D. Flatness Analysis
This section describes the procedure to compute the visualization of the loss landscapes and the Hessian eigenvalues.



Table 14. General training hyper-parameters common to all methods, distinguished by dataset and model architecture. Symbols: local
epochs E, local learning rate η, weight decay wd, client-side momentum βl, batch size B.

Dataset Model Rounds Clients Client optimization
per round E η wd βl B

CIFAR10 CNN 10000 5 1 10−2 4 · 10−4 0 64

CIFAR100
CNN 20000 5 1 10−2 4 · 10−4 0 64

ResNet18-GN 10000 10 1 10−2 10−5 0.7 64
LANDMARKS-USER-160K MobileNetv2 1300 50 5 0.1 4 · 10−5 0 64

Table 15. Search grid used to find optimal hyper-parameters for each combination of method, dataset and model. We highlight the best
performing values in bold.

Method HParam CIFAR10 CIFAR100 LANDMARKS-USER-160KCNN ResNet18 CNN ResNet18

FEDSAM ρ [0.05, 0.1, 0.15, 0.2] [0.01, 0.02, 0.05] [0.005, 0.01, 0.02, 0.05] [0.01, 0.02, 0.05] [0.05]

FEDPROX µ [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1]

FEDDYN
α [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.01] [0.001, 0.01]

ρ (SAM-based only) [0.15] [0.01] [0.01, 0.02] [0.01] [0.05]

FEDSPEED
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.005, 0.01, 0.02, 0.05] [0.01] [0.05]
α [0.9, 0.95, 0.99] [0.9, 0.95] [0.9, 0.95, 0.99] [0.9, 0.95] [0.95]
λ [10, 100, 1000] [10, 100, 1000] [10, 100, 1000] [10, 100, 1000] [100, 1000]

FEDGAMMA ρ [0.15] [0.01] [0.01] [0.01] [0.05]

FEDSMOO
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.005, 0.01, 0.05, 0.1, 0.2] [0.01] [0.05, 0.1, 0.2, 0.3]
β [5, 10, 100] [1, 2, 5, 10] [10, 100] [5, 10, 100] [10, 50, 100, 1000]

FEDGLOSS (ours)

ρs [0.01, 0.1, 0.15] [0.01, 0.05, 0.1, 0.5] [0.01, 0.05, 0.1, 0.2] [0.01, 0.05, 0.1, 0.5] [0.005, 0.01, 0.02]
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.05, 0.1, 0.2] [0.01] [0.05, 0.1, 0.2, 0.3]
β [5, 10, 100] [1, 2, 5, 10] [10, 100] [5, 10, 100] [10, 50, 100]
Ts [1000, 2000, 4000] [0] [1000, 2000, 5000, 10000, 15000] [0] [0]

D.1. Visualizing 3D Loss Landscapes
We leverage techniques from [31] to visualize the loss landscapes of our models. We adapt their code to work with our
specific datasets and network architectures. The process involves calculating the loss function along random directions in the
parameter space. This is achieved by perturbing the model’s parameters within a defined range. In our visualizations, we
constrain these perturbations to occur within the range of [−1, 1] for both the x and y axes. To ensure consistent comparisons
across models (e.g., as seen in Fig. 6), we utilize the same set of random directions for all models.

D.2. Visualizing 1D Loss Landscapes
Fig. 19 shows the interpolation of FEDGLOSS and NAIVEFEDGLOSS’s models. Given their respective weights wwwFEDGLOSS
and wwwNAIVEFEDGLOSS, the interpolation is computed using a coefficient γ as

www = γ ·wwwFEDGLOSS +(1− γ) ·wwwNAIVEFEDGLOSS . (8)

For each γ ∈ [−1, 2],www is tested on the training or test sets, and the plot reports the computed loss. The resulting interpolation
indicates that there is no loss barrier between the two models, suggesting they lie within the same basin. Additionally, the
1D geometry of the emerging loss landscape reveals that both models converge to a flat minimum when evaluated on both
CIFAR100 and CIFAR10.

D.3. Hessian Eigenvalues for Flatness Measure
Following prior work [4, 12, 14, 31], we use the spectrum of the Hessian matrix to quantify the flatness of the loss landscape.
Here, lower maximum eigenvalues correspond to flatter landscapes, implying less sharpness. To compute these eigenvalues
(denoted by λ1 in the main paper), we employ the stochastic power iteration method [60] with a maximum of 20 iterations,
referring to the code of Golmant et al. [15].
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