
FRAME: Floor-aligned Representation for Avatar Motion from Egocentric Video

Supplementary Material

A. Model Details
A.1. Camera Model
In this project we use the camera model introduced by Kan-
nala et Al. [3]. In the following paragraph, we summarize
its main characteristics and describe how we employed it in
this project.

For a normalized undistorted pixel (u, v), let θ represent
the angle between the incoming ray and the optical axis, and
r the radial distance in the image plane. By definition, in the
pinhole model the following relation holds r = tan(θ).

The distorted radial coordinate is given by:

rd = θ · (1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8), (1)

where k1, k2, k3, k4 are specific to each the lens.
The relationship between distorted and undistorted coor-

dinates is given by

u =

(
r

rd

)
ud, v =

(
r

rd

)
vd (2)

where the d suffix stands for the distorted quantity.

A.1.1. Unprojection
We call unprojection the process of obtaining the 3D coor-
dinates given a 2D pixel and its distance from the camera.
To unproject a point, it is necessary to undistort it and sub-
sequently obtain its 3D coordinates via the standard pinhole
model. To undistort pixels we need to solve Equation 1 for
θ. Since it contains higher-order terms in θ, direct inversion
is intractable. Therefore, we follow OpenCV [1] in using
a fixed point algorithm, starting with θ0 = rd and iterating
θn+1 = f(θn). In practice, we empirically observe that 5
steps are enough to find an accurate solution.

Once θ converges, it’s possible to compute r = tan(θ)
and obtain the undistorted pixel coordinates. Given the
undistorted pixels and their associated depth, we can ob-
tain their 3D coordinates directly by inverting the pinhole
model equation.

x′ =
u− cx
fx

, y′ =
v − cy
fy

(3)

Where f is the focal length and c the coordinates of the
optical axis intersection with the image plane The 3D coor-
dinates (X,Y, Z) are then obtained by scaling the normal-
ized coordinates by the corresponding depth value d at each
pixel:

X = d · x′, Y = d · y′, Z = d (4)

A.2. SoftArgmax
In order to obtain the uk, vk pixel coordinates of each joint
k and their depth dk we define the weight matrices Qx,Qy

as
Qx

ij =
j

W − 1
Qy

ij =
i

H − 1
(5)

This allows us to perform a soft-argmax operation [4]
to obtain the normalized 2D coordinates in a differentiable
way.

uk =
∑
i,j

(Qx ⊗ Ĥk)ij ,

vk =
∑
i,j

(Qy ⊗ Ĥk)ij ,
(6)

Where ⊗ denotes the Hadamard product

B. Metrics
PA-MPJPE We adopt the definition established in prior
work [2]. PA-MPJPE quantifies the similarity between
predicted and ground-truth 3D poses by computing the
mean per-joint Euclidean distance after Procrustes align-
ment. This alignment removes pelvis translation and ap-
plies a similarity transform (rotation, translation, and scale)
to minimize the discrepancy between poses.

3D-PCK 3D-PCK quantifies the percentage of predicted
3D keypoints within 10 cm of the ground-truth. For each
joint, the Euclidean distance is calculated, and predictions
below the threshold are deemed correct.

Jitter Jitter quantifies temporal smoothness by compar-
ing frame-to-frame changes in predicted and ground-truth
3D joint positions. Although there are multiple ways to
quantify it, we follow Physcap [6] and compute:

1

N · J

N∑
n=1

J∑
j=1

∣∣∣∥vj
n,pred∥ − ∥vj

n,gt∥
∣∣∣

where N is the number of sequences, J is the number of
joints, vn,pred and vn,gt are the predicted and ground-truth
joint velocity at frame n for joint j, respectively.

Non-penetration Percentage This metric measures the
fraction of all poses where all predicted 3D joints remain
above the ground plane (y > 0)

Mean Penetration Error (MPE) MPE measures the av-
erage penetration depth of joints below the ground plane
(y ≤ 0).

Foot Sliding Velocity This metric evaluates foot veloc-
ity discrepancies between prediction and ground truth when



feet are in contact with the ground. The sliding velocity
error is computed as:

1

Nc

Nc∑
n=1

4∑
j=1

∥(vj
n,pred − vj

n,gt) · 1xz∥ if joint j is in contact

where Nc is the number of contact frames, 4 is the num-
ber of feet joints, and 1xz is a vector that projects the veloc-
ity onto the xz-plane.

C. Data Collection
C.1. Recording Rig
The recording rig is built on the Meta Quest 3 [5], chosen
for its lightweight design and comfort, allowing for pro-
longed use. The Quest 3 includes an RGB outward-facing
camera with high-quality passthrough capabilities, enabling
users to interact naturally with their surroundings. The
headset computes on-device 6D head pose data, streamed
continuously via HTTP from the Quest 3 to a Raspberry Pi
worn by the user, with a custom-built Unity [7] application
handling data transmission.

Egocentric Video Synchronization The fisheye cameras
mounted on the VR headset record at 30Hz as the studio
camera array, but their clocks are not hardware synchro-
nized. To address this, we use a simple visual cue: toggling
the studio lights on and off at the beginning and end of each
session. This provides a temporal reference, allowing us to
align the fisheye camera frames with the studio’s frame of
reference. Manual intra-frame adjustments are applied to
account for any residual offsets or rolling shutter artifacts,
ensuring tight alignment across all frames.

References
[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000. 1
[2] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Ji-

tendra Malik. End-to-end recovery of human shape and pose.
In Computer Vision and Pattern Recognition (CVPR), 2018. 1

[3] J. Kannala and S.S. Brandt. A generic camera model and
calibration method for conventional, wide-angle, and fish-eye
lenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(8):1335–1340, 2006. 1

[4] Diogo C Luvizon, Hedi Tabia, and David Picard. Human pose
regression by combining indirect part detection and contextual
information. Computers & Graphics, 85:15–22, 2019. 1

[5] Meta. Meta quest 3, 2023. Accessed: 2024-10-09. 2
[6] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and Chris-

tian Theobalt. Physcap: physically plausible monocular 3d
motion capture in real time. ACM Trans. Graph., 39(6), 2020.
1

[7] Unity Technologies. Unity: Real-time development platform,
2024. Version 2024.1.0. 2


	Model Details
	Camera Model
	Unprojection

	SoftArgmax

	Metrics
	Data Collection
	Recording Rig


