
A. Analysis of Condition Independence
Although integration of multiple guidances in the denoising
process is popular recently in many tasks[], independence of
conditions is ignored now. We first provide the total proof
of Eq. (6).

Property A.1. Denoting a sets of independent conditions
as C = {c1, · · · , ck} with manually defined intensities
w = {w1, · · · , wk}, we can use multiple UNets ϵθ to pre-
dict conditional and unconditional: ϵθ0(zt) = ∇z log p(zt)
and ϵθi(zt, ci) = ∇z log p(zt|ci). The reverse process in
each timestamp is as follows:

ϵ̂(zt, C) = ϵθ0(zt) +

K∑
i=1

wi(ϵθi(zt, ci)− ϵθ0(zt)) (6)

Proof. Since C = {c1, · · · , ck} are independent, we have
p(C|zt+1) =

∏
p(ci|zt+1)

wi . The denoising process is
then converted into:

∇zt log p(zt) +∇zt log p(C|zt)

=∇zt log p(zt) +

K∑
i=1

wi∇zt log p(ci|zt)

=∇zt log p(zt) +

K∑
i=1

wi∇zt log
p(zt|ci)
p(zt)

=∇zt log p(zt) +

K∑
i=1

wi(∇zt log p(zt|ci)−∇zt log p(zt))

In Stable Diffusion, we use a UNet ϵ to predict each term:
ϵ(zt) = ∇z log p(zt) and ϵ(zt, ci) = ∇z log p(zt|ci).

An important assumption is the independence of each
condition. Here we provide a simple example to reveal
the condition independence and illustrate how we can uti-
lize multiple conditions in in-domain generation. We use
two text conditions c1 =a photo of a cat and c2 =a
photo of a dog, and attain the guidance by: ϵ̂ = (1−
2w)ϵ(zt)+w · ϵ(zt, c1)+w · ϵ(zt, c2). The expected result,
which was to produce one cat and one dog, did not occur;
instead, a hybrid creature, combining features of both a cat
and a dog, was generated as can be seen in Fig. 13.

The theoretical explanation for this phenomenon is that
during the denoising process, the denoising direction is in-
dependently guided by each component to maximize the
likelihood of each condition independently. It means that
the generative result achieves the high probability of both
p(c1|x) and p(c2|x). Hence, an effective way to uti-
lize multiple guidance for synthesis is by using conditions
which can represent the whole image. For example, in
text-guided face-domain generation, using a photo of
face, wearing glasses would be much better than
using wearing glasses.

Figure 13. Example to reveal condition independence. We use
two text conditions a photo of a cat and a photo of a
dog. The generative results represent a mixture creature of dog
and cat.

B. Condition Decoupling

prompt:
“<flower> in Van Gogh style”

prompt1: “<flower>”
prompt2: “in Van Gogh style”
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Figure 14. Example of condition decoupling. Decouple condi-
tions can make contents independent. It helps mitigate the bias in
diffusion priors, leading to more diverse results.

Apart from domain guidance and control guidance, we
further demonstrate a general condition decoupling tech-
nique. It can also explain that we could using our in-
domain diffusion model to generate out-of-domain results
(like stylization generation). Using multiple guidances also
has the unique ability to decouple relationships between
contents that are typically related in the real world, thereby
enabling the generation of more diverse images. For in-
stance, if the goal is to generate images of a sunflower in
the style of Van Gogh, as opposed to replicating Van Gogh’s
specific sunflower paintings, we can apply two conditions:
sunflower and in Van Gogh style. This distinc-
tion is showcased in Fig. 14. Using the combined prompt
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Figure 15. Ablation study on 3D generation. During the 3D
fine-tuning process, we replaced our porcelain model with basic
SD, resulting in a noticeable decline in generation quality. The
distinctive porcelain patterns in the output disappeared completely.

sunflower in Van Gogh Style tends to produce
images closely resembling Van Gogh’s paintings. In con-
trast, employing decoupled conditions results in a much
broader diversity of images. This method proves equally ef-
fective for generating concepts similar to those in the train-
ing dataset, such as rose.

C. Experimental Details

C.1. Inference and Evaluation

We employ the DPM-Solver++ scheduler [28] with 100
steps across all models while using 25 steps for stylized re-
sults to achieve better results. Regarding the guidance scale,
we perform grid searches on all models and conditions, with
an interval of 0.25. In text-guided generation, we com-
bine the prompts for baselines, like a photo of <V>
face, wearing glasses. To quantitatively measure
the fidelity and controllability of the generated images, we
incorporate the FID in unconditional generation, and align-
ment in conditional generation. Moreover, we also under-
take a user study to gather human preferences, providing a
qualitative dimension to our evaluation criteria and ensur-
ing a holistic view of the performance of the methods under
scrutiny

Text-guided Generation. Although the measure of
text-image similarity, often quantified by CLIP scores, is
a common metric for evaluating the alignment in text-
guided image generation, we observed its limitations in ac-
curately reflecting facial attributes. For instance, in the
case of the prompt ‘wearing glasses,’ the difference in CLIP
scores between images with and without glasses is relatively
marginal, often around a value of 1 (e.g., 18 to 19). Due to
this lack of pronounced differentiation, we adopt an alter-
native approach for evaluation.

We utilize a set of attribute-specific prompts, detailed in
Tab 2, to generate images. Subsequently, we employ fa-
cial attribute predictors to ascertain whether the specified at-
tribute (e.g., glasses) is accurately represented in the gener-

Table 2. Prompts used for text-guided generation evaluation.
We generate 100 images of each prompt for evaluation.

wearing glasses wearing sunglasses
wearing hat smilling

male female
white people black people
asian people square face

ated images. The effectiveness of our method is then quanti-
fied by the ratio of successful samples where the controlled
attribute is correctly manifested in the results.

C.2. Fine-Tuning Baselines

To establish a comprehensive baseline, we employ sev-
eral state-of-the-art fine-tuning methods: Textual Inver-
sion [13], DreamBooth [41], Custom Diffusion [22], and
OFT [34], along with our method. Textual Inversion and
Custom Diffusion serve as parameter-efficient comparisons,
streamlining the experimental setup, while OFT is included
for its regularization properties. DreamBooth fine-tunes a
concept token <V> and UNet’s parameters without class-
specific prior preservation loss since it is not compatible to
customize concept. The experimental distinction between
baselines and our concept-centric diffusion models lies in
the use of text prompts. We adopt prompt templates inspired
by DreamBooth [41], utilizing formats such as a photo
of <V> face. These additional tokens <V> are omitted
in compared methods where text embedding is not trained

Spatial-guided Generation. To assess the effectiveness
of spatial-guided generation, we select a sample of 200 im-
ages from the CelebA-HQ dataset. For each image, we gen-
erate corresponding canny images to use as conditions. We
then produce 5 generated results per condition and compute
the discrepancy between the canny conditions and the cor-
responding generative results, providing a quantitative mea-
sure of the alignment accuracy.

User Study. To gauge human preferences in both uncon-
ditional and conditional generation contexts, we organize a
user study. We gain generative results from all methods us-
ing the same random seed across all methods and present
these images to participants in a random sequence. Partici-
pants are instructed to choose the best image from the given
set. We record the frequency with which each method is se-
lected as the best, and this data is used to calculate the win
rate for each method. The win rates serve as an indicator of
human preference (denoted as ’Pref.’) and are presented in
the main paper.



C.3. Other In-domain Generation Settings

C.3.1 Image Editing

We following SDEdit to edit facial images with diffusers
implementation1. We use noising strength of 0.6 and infer-
ence steps of 20. We follow Sec. 3.4 to adjust the guidance
scales. The editing process is the same as text-guided in-
domain generation, we utilize original SD1.5 to predict un-
conditional guidance and text-conditioned guidance and use
the trained facial domain diffusion model to predict domain
guidance.

C.3.2 Text-to-3D Generation

Our design involves three stages to generate a 3D porce-
lain. First, we use our model to create a 2D porcelain im-
age. Next, we employ the classic Zero-1-to-3 model for
image-to-3D conversion to obtain a rough target 3D model.
Finally, we fine-tune this model using our porcelain model
and SDS loss. During the fine-tuning process, we set the
CFG parameters to 100 on SD and 50 on our porcelain
model. Additional results is shown on Fig 18. Our imple-
mentation is based on stable-dreamfusion2.
Effects of our porcelain model in 3D generation. Dur-
ing the 3D fine-tuning process, we replaced our porcelain
model with basic SD, resulting in a noticeable decline in
generation quality. The distinctive porcelain patterns in the
output disappeared completely, as shown in Fig 15.

D. More Qualitative Results
D.1. Unconditional Concept-centric Generation

• Fig 16 illustrates the comparison of unconditional gener-
ative results on FFHQ.

• Fig 17 illustrates the comparison of unconditional gener-
ative results on AFHQv2.

D.2. Conditional Generation

Fig 19 illustrates the comparison of text-guided generative
results on FFHQ.

Fig 18 illustrates the results of 3D generation within
porcelain domain.

E. Limitations
Using multiple models to estimate different guidances
slightly increases both inference time and memory usage.
Originally, the generation process required predicting two
guidances, but in-domain generation requires predicting
three guidances, resulting in a 50% increase in computation

1https://github.com/huggingface/diffusers/blob/
main / src / diffusers / pipelines / stable _ diffusion /
pipeline_stable_diffusion_img2img.py

2https://github.com/ashawkey/stable-dreamfusion

time. To accelerate this process, we utilized multiple GPUs
by placing the concept diffusion model and the original dif-
fusion model on separate GPUs for parallel computation,
which only increased the generation time by approximately
16%. Regarding memory usage, incorporating an additional
concept diffusion model increases the memory requirement
for 512-resolution generation from 3.5GB to 5GB, which is
acceptable for most GPU devices. One foreseeable solution
to the computation time and memory issues is to train on
a distilled, smaller version of Stable Diffusion, as learning
domain guidance does not require a large UNet. We plan to
explore this in future work. Meanwhile, text prompts can
not be too much out-of-domain, which causes conflict be-
tween domain guidance and control guidance.

https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
https://github.com/ashawkey/stable-dreamfusion


OFTStable Diffusion Textual Inversion Fine-Tuning Custom Diffusion Ours

Figure 16. Unconditional generation results on FFHQ. We illustrate the unconditional results of all models trained from our method and
baselines.
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Figure 17. Unconditional generation results on AFHQv2. We illustrate the unconditional results of all models trained from our method
and baselines.
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Figure 18. Additional results of 3D generation with porcelain model.
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Figure 19. Text-guided generation comparison across baselines and our method. Since fine-tuning with large-scale training process
almost loses controllability (as shown in Fig 11), we evaluate other methods in this part.


