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A. Datasets

In this section, we explain the data processing of each
dataset in detail.
Structured3D dataset [55]. It is an indoor synthetic
dataset. We employ its training set, which consists of
18,298 samples, for our training purposes. In terms of data
processing, we initially scale the depth map values by a
factor of 0.001. Subsequently, we clip these values to a
range of 0 to 10 meters. Finally, we apply depth normal-
ization [21].
Deep360 dataset [26]. This dataset is synthetic and con-
tains outdoor scenes, generated using the CARLA simula-
tor [15]. It comprises pairs of fisheye images and depth
maps. Following the official guidance of [26], we transform
the fisheye format into the ERP representation. We clip the
depth values to a range of 0 to 100 meters. We restrict larger
depth values in the sky region to 100 meters. Subsequently,
depth normalization is applied following [21].
ZInD dataset [14]. This is an indoor dataset with room lay-
out annotations but lacking depth labels. We employ it for
semi-supervised learning to enhance the scene diversity of
indoor environments. We utilize its training set with 54034
samples for training.
360+x dataset [12]. This dataset encompasses both in-
door and outdoor scenes, showcasing its diversity. For
data processing, we uniformly extract frames from the high-
resolution videos contained within the 360+x dataset. From
approximately 200 videos, we extract a total of 47,956
frames. Subsequently, we observe that the performance of
our PanDA is suboptimal in extremely dark regions. As a
result, these scenes are omitted from the training set. Fi-
nally, we utilize SegFormer [47] to detect sky regions and
assign a depth value of 1.0 to these areas, which represents
the maximum value on the normalized depth map.
Matterport3D dataset [11]. It is used to validate the effec-
tiveness of our PanDA in real-world scenes. The maximum
depth value is set at 10 meters.
Stanford2D3D dataset [5]. It is also used to validate the
effectiveness of our PanDA in real-world scenes. The max-
imum depth is set at 10 meters. Given that the top and bot-
tom parts of panoramas in the Stanford2D3D dataset are
missing, we fill in these missing areas by following the
methods described in UniFuse [20].
Other datasets. Besides Deep360 [26], there is another
synthetic dataset [7] containing outdoor scenes. However,
it was not publicly available at the time of submission.
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Figure 12. Illustration of the indexes of patches in different
panoramic representations.

B. Metrics and Alignment

Metrics. We evaluate with two standard metrics: Abso-
lute Relative Error (AbsRel) and Root Mean Squared Error
(RMSE). Performance assessments are confined to valid re-
gions where ground truth depth, denoted as D⇤, is avail-
able. We denote the number of valid pixels by K. Addi-
tionally, we employ three percentage metrics, �i, for values



Representation Patch Number FoV Resolution Equator Region Pole Region

ERP 1 180� ⇥ 360� 504⇥ 1008 � �
Cube map (CP) 6 90� ⇥ 90� 252⇥ 252 {Front, Left, Right, Back} {Top, Down}
Tangent patch (TP) 18 80� ⇥ 80� 126⇥ 126 4th to 15th 1st to 3rd, and 16th to 18th

Horizontal slice (HS) 4 45� ⇥ 360� 126⇥ 1008 2nd and 3rd 1st and 4th

Vertical slice (VS) 4 180� ⇥ 90� 504⇥ 252 � �

Table 9. The settings of panoramic representations.

(a) Raw image (b) ! = 5° ,% = 1 (c) ! = 10° ,% = 1 (d) ! = 20° ,% = 1

(e) ! = 0° ,% = 0.8 (f) ! = 0° , % = 1.5 (g) ! = 0° ,% = 2.0 (h) ! = 0° ,% = 2.5

Figure 13. Visualization of panoramas under different transformations.

of i 2 {1.25, 1.252, 1.253}. With the predicted depth D,
metrics can be formulated as follows:
• Absolute Relative Error (AbsRel):

1

K

KX

i=1

||D(i)�D⇤(i)||
D⇤(i)

. (8)

• Root Mean Square Error (RMSE):
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• �i, the fraction of pixels where the relative error between
the depth prediction D and ground truth depth D⇤ is less
than the threshold i:

max{ D(p)

D⇤(p)
,
D⇤(p)

D(p)
} < i. (10)

Alignment. In the main paper, the reported results of
PanDA-{S,B,L} in Tab. 5, 6 do not apply any alignment
operation for a fair comparison. In addition, to assess
the zero-shot performance of Depth Anything v1 and v2,
Marigold, and our PanDA, we employ scale and shift align-
ment as described in [31]. The scale and shift adjustments
of the depth predictions are manually aligned with the depth
ground truth. In Tab. 1, 2, and Fig. 6, this alignment is per-
formed in the disparity space. Conversely, in Tab. 4, 7, 8,
the alignment occurs in the depth space.
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Figure 14. Illustration of the spherical spatial transformations.

C. Analysis

C.1. Different Panoramic Representations

In Tab. 9, we detail the settings of the panoramic represen-
tations used, including the number of patches, field-of-view
(FoV), spatial resolution, and the grouping of the equator
and polar regions. The indices of patches for CP, TP, and
HS are illustrated in Fig. 12.

C.2. Different Camera Positions

In Fig. 3, we utilize iPad Pro and the app ”polycam” to scan
and generate the point cloud of the scene.

C.3. Various Spatial Transformations

Meaning. As depicted in Fig. 14, given the 360� camera,
such as with the THETA Z1, it is not always possible to en-
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Figure 15. Visual comparison between different input resolutions.

sure that spherical images are captured vertically. Another
scenario occurs in virtual reality (VR) environments, where
users have the freedom to adjust their viewing directions
and zoom in on objects of interest for an immersive expe-
rience. In these cases, spherical transformations are crucial
to meet the practical demands of real-world applications.
More visualization of spatial transformations. Addi-
tional visualization results of the Möbius transformation are
presented in Fig. 13, including vertical rotations with differ-
ent angles � and spherical zooms with different zoom lev-
els s. It is obvious that the transformations introduce more
curves, which complicates the task of panoramic depth es-
timation compared to panoramas captured vertically.

D. The Proposed Method

D.1. EPNL

For each panorama, we sample 32 patches. The horizon-
tal position of the patch center is randomly selected from a
range of 0 to W . For the vertical position, we use a Gaus-
sian distribution to sample more patches around the equator
region. The mean of this distribution is set at H

2 , and its
variance at H

6 .

D.2. Spatial Resolution of Pseudo Depth Labels

As shown in Fig. 15, when generating pseudo depth labels
for unlabeled panoramas, increasing the input resolution
significantly reduces noise and enhances structural details.

D.3. MTSA

Overview. We illustrate the detailed process of the Möbius
transformation for panoramas. The formulas are based
on [10]. Differently, we take the equator center as the pole
to zoom in on the objects at the equator. As illustrated in
Fig. 16, a panorama ui undergoes an initial projection from
the plane to the sphere via spherical projection (SP). Sub-
sequently, this spherical representation is projected onto the
complex plane using stereographic projection (STP). In our
conduction, the specific point on the complex plane is deter-
mined by the intersection of the equator point and a desig-
nated spherical point. The Möbius transformation is applied
on the complex plane. Following this, we apply the inverse
stereographic projection (STP�1) and inverse spherical pro-
jection (SP�1) to obtain the transformed panorama M(ui).

SP STP

ℳ = #$ + &
'$ + (

STP -1SP -1

complex plane
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!!
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Figure 16. Illustration of the process of MTSA. •: Equator point;
•: Spherical point; •: Complex plane point.

The Möbius transformation is conducted in the complex
plane. To achieve it, a panorama with ERP representation
is first projected from the plane to the sphere via spherical
projection (SP). The plane coordinate is proportional to the
angle coordinate (✓,�) (where ✓ represents the longitude
and � represents the latitude), while the spherical coordinate
can be defined as (x, y, z). In this case, SP can be defined
as follows [10]:

SP :

0

@
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z
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A =

0

@
cos� cos ✓
cos� sin ✓

sin�

1

A. (11)

Then, we project from the sphere to the complex plane
with stereographic projection (STP). By defining the coor-
dinate of the complex plane as Z = (x0, y0) and selecting
the equator center as the pole, the STP can be formulated as
follows:

STP : x0 =
y

1� x
, y0 =

z

1� x
. (12)

In the complex plane, the Möbius transformation is con-
ducted with the following formulation:

f(Z) =
aZ + b

cZ + d
, (13)

where a, b, c, and d are complex numbers. In addition, a, b,
c, and d should satisfy ad�bc 6= 0. For the vertical rotation
with angle �, the parameters of Möbius transformations can
be represented as follows [10]:

✓
a b
c d

◆
=

✓
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0 1

◆
. (14)

For the zoom operation with level s, the parameters of
Möbius transformations can be represented as follows [10]:

✓
a b
c d

◆
=

✓
s 0
0 1

◆
. (15)

The Möbius transformation obeys the matrix chain mul-
tiplication rule. After the Möbius transformation in the
complex plane, we conduct inverse projections to project



from the complex plane to the sphere and the plane, respec-
tively. The inverse projections can be formulated as follows:
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E. More Experimental Results

E.1. The parameters of MTSA

For the proposed MTSA, the default setting is that: the ver-
tical rotation angle is uniformly sampled in [�10�, 10�),
denoted as U(�10�, 10�). Moreover, the zoom level is uni-
formly sampled in [1, 1.5), denoted as U(1, 1.5). To further
discuss the effect of the MTSA by introducing vertical rota-
tion and spherical zoom into spatial augmentation, we con-
duct ablation studies for the range of sampling distribution
in Tab. 10 and Tab. 11.

Methods Original Vertical angle ✓ Zoom level s
10� 20� 2.0 3.0

U(�5�, 5�) 0.4896 0.5309 0.6045 0.6140 0.7426
U(�10�, 10�) 0.4915 0.5188 0.5706 0.6242 0.7461
U(�20�, 20�) 0.4923 0.5157 0.5500 0.5948 0.7205
U(�30�, 30�) 0.5000 0.5208 0.5457 0.5939 0.7023

Table 10. Examine the range of vertical rotation angles. We report
RMSE metric on the Matterport3D dataset.

Methods Original Vertical angle ✓ Zoom level s
10� 20� 2.0 3.0

U(1, 1.2) 0.4943 0.5158 0.5667 0.7425 0.8870
U(1, 1.5) 0.4915 0.5188 0.5706 0.6242 0.7461

U(1, 2) 0.5250 0.5886 0.6890 0.8276 0.9649
U(1, 3) 0.5187 0.5819 0.6841 0.8109 0.9494

Table 11. Examine the range of zoom levels. We report RMSE

metric on the Matterport3D dataset.

Vertical rotation angle. As shown in Tab. 10, it can be
found that a smaller angle distribution can benefit the depth
estimation of the original panorama. Moreover, MTSA with
a larger angle distribution benefits the depth prediction on
panoramas with larger rotation angles, e.g., 20�, and larger
zoom levels, e.g., 3.0. Transformations with larger verti-
cal rotation angles and larger zoom levels would introduce
severe curves to challenge the panoramic depth estimation.
Our choice of U(�10�, 10�) is a balance between the per-
formance of original and transformed ones.
Zoom level. As depicted in Tab. 11, we investigate the im-
pact of various zoom level distributions. We observe that

employing larger zoom level distributions, such as U(1, 2)
and U(1, 3), can degrade the depth estimation performance
for both original and transformed panoramas. We attribute
this degradation to the severe distortions that hinder the
model from learning effective structural information.

E.2. Pseudo Depth Labels

Different amounts of pseudo depth labels. To further ex-
amine the effect of pseudo depth labels in the SSL pipeline,
we vary the amounts of pseudo depth labels, as illustrated
in Tab. 12. The results show that the larger the amount of
unlabeled data, the better the performance, especially under
spherical transformations.

Num. of unlabeled data Original Vertical angle ✓ Zoom level s
10� 20� 2.0 3.0

10199 (10%) 0.4998 0.5280 0.5912 0.6892 0.8248
20398 (20%) 0.4932 0.5252 0.5910 0.6919 0.8255
101990 (100%) 0.4915 0.5188 0.5706 0.6242 0.7461

Table 12. Vary the number of unlabeled data during SSL. We re-
port RMSE metric on the Matterport3D dataset.

Only pseudo depth labels for training. To further inves-
tigate the effect of pseudo depth labels from the teacher
model, in Tab. 13, we only utilize the unlabeled panora-
mas and the corresponding pseudo depth labels to train the
student model. It is observed that training with only pseudo
depth labels yields better performance compared to solely
using synthetic depth ground truth. This improvement is
likely due to several factors: 1) The amount of pseudo
depth labels exceeds that of synthetic depth ground truth; 2)
The unlabeled data consists of real-world samples; 3) The
teacher model provides accurate pseudo labels that enhance
student model training. However, both approaches show
limited effectiveness in transformed panoramas.

Methods Original Vertical angle ✓ Zoom level s
10� 20� 2.0 3.0

LS 0.5109 0.5711 0.6804 0.8381 0.9793

LP 0.5031 0.5584 0.6557 0.8358 0.9870

Table 13. The effect of only utilizing the pseudo depth labels to
train the student model. We report RMSE metric on the Matter-
port3D dataset.

E.3. Few-shot Learning for Fine-Tuning

The student model has been trained using both synthetic
data and large-scale unlabeled data. We explore whether
a small amount of real-world panoramic depth ground truth
is sufficient to fine-tune our PanDA for real-world scenes.
In this context, Tab. 14 demonstrates the results from uni-
formly sampling the Matterport3D dataset [11] at percent-
ages of 1%, 5%, 10%, and 25%. It is observed that with
just 5% of the samples, our PanDA can be fine-tuned to



Percentage AbsRel # RMSE # �1 " �2 " �3 "

1% 0.1340 0.5303 83.26 96.01 98.94
5% 0.1099 0.4356 89.48 97.93 99.31
10% 0.1002 0.4236 90.77 98.03 99.40
25% 0.0946 0.3967 91.91 98.26 99.47
100% 0.0922 0.3950 92.26 98.30 99.47

Table 14. Utilizing small parts of the training set of the Matterport
dataset for fine-tuning.

achieve competitive results with existing SOTA panoramic
monocular depth estimation methods. Additionally, at 25%,
the performance closely approximates that achieved by us-
ing all the depth ground truth in the training set of Matter-
port3D [11].

E.4. LoRA Rank

By default, the rank parameter in LoRA is set as 4. In
Tab. 15, it can be found that different choices of the rank
parameter have a limited effect on the depth estimation per-
formance.

Rank 2 4 8

AbsRel # 0.1049 0.1036 0.1047
RMSE # 0.4531 0.4539 0.4583

Table 15. The effect of LoRA rank parameter. We report RMSE

metric on the Matterport3D dataset.

E.5. The effect of Sampling Regions in EPNL

In Tab. 16, by changing the sampling regions from equator
region to polar regions, the performance degrades. We as-
cribe it as the polar regions contain less structural informa-
tion. Sampling on the polar regions provides less structural
guidance.

Methods Matterport3D Stanford2D3D
AbsRel # RMSE # AbsRel # RMSE #

Sampling in Poles 0.1489 0.5403 0.1274 0.3542
Sampling in Equator 0.1256 0.5062 0.1109 0.3401

Table 16. Change to poles (Latitude [-90�,-30�] [ [30�,90�]).

E.6. The visualization Issue of DAMs

As illustrated in Fig. 17, some structural details can be ne-
glected if we visualize the depth estimation result of DAM
as a whole. This is because the global normalization be-
fore visualization would squeeze the details of local regions.
Therefore, for a fair comparison, we showcase the local ar-
eas of the DAM prediction with local normalization.

E.7. Point Cloud Results

In Fig. 18, the point clouds generated from our depth pre-
dictions can recover reasonable structures of the scene, such

Panorama Local PatchDAM v2

Figure 17. Illustration of the visualization issue of DAMs.

as the chairs in the classroom and outdoor buildings.

Point Cloud Result

Figure 18. Visualization of point clouds generated from the depth
estimation results of our PanDA.

E.8. Model Complexity

With only LoRA added, the parameters of PanDA are sim-
ilar to DAM v2. As for inference speed, processing a
504⇥1008 panorama requires 49/90/234ms with PanDA-
{S,B,L}, respectively. The running speeds are tested by
averaging 100 times on an A40 GPU.

F. Limitation and Future Work

Due to the scarcity of panoramic depth labels in diverse
scenes, our teacher model is trained on limited scenes com-
pared with the depth datasets for perspective images. To
enhance the zero-shot capability of our model, future work
will focus on collecting panoramas paired with depth labels
across a broader range of environments, including both syn-
thetic and real-world scenes.
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