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Abstract

In this supplementary material, we first elaborate the details
about our detector architecture in Section A. Then, prelim-
inary of group convolution is given in Section B, and de-
tailed description of the training loss function can be found
in Section C. We explain the differences between our work
and camera pose estimation methods in Section D. Finally,
more visual results are given in Section E. Note that we did
not include all the material in the main paper due to the
space limit.

1. A. Detial of detector
Similar to Gen6D [3] and TGID [1], we apply a correlation-
based instance object detector. We employ a VGG-11 [6]
network to extract feature maps from both reference and
query images. Subsequently, reference image feature maps
serve as convolution kernels to generate score maps by con-
volving with the query image feature map. From the re-
sulting multi-scale score maps, we regress a heatmap and
a scale map. Unlike Gen6D, which outputs 2D bound-
ing boxes from the object detection module and includes
unnecessary background information, we output segmenta-
tion masks to ensure the accuracy of the subsequent refiner.
Specifically, we set a per-pixel confidence score, and pixels
are considered part of the target object when their confi-
dence exceeds a certain threshold.

2. B. Preliminary of group convolution
we introduce some backgrounds about SO(3) space in this
section. For more detail please refer to [4, 8].

Icosahedral Group: We define feature maps on the
largest discrete finite subgroup of SO(3), the icosahedral
group G. This group consists of 60 rotations that preserve
the symmetry of a regular icosahedron. Due to the group’s
closure property, for any g, h ∈ G, the composition of rota-
tions gh is also in G.

Group Action: An element g ∈ G can act on other ob-
jects. We use two types of group actions: Tg ◦ P represents
rotating a set of points P by the rotation g ∈ G, and Pg ◦ f

represents permuting the matrix f according to g ∈ G.
Neighborhood Set: To define the convolution layer on

the icosahedral group G, we introduce a neighborhood set
H , which is analogous to the 3× 3 or 5× 5 neighborhoods
used in standard image convolution.

3. C. Loss of heat map

Given a heat map H , we treat all values as logits and em-
ploy a binary classification loss to guide the prediction of
the heat map as in Gen6D [3]. To do this, we first project
the object center onto the image using the ground-truth ob-
ject pose. A pixel on the heat map is considered correct
if its distance from the object center projection is less than
1.5 pixels; otherwise, it is incorrect. The loss function is
formulated as:

ℓheat =
∑
p

−1(∥p− cprj∥2 < 1.5) log σ(H(p))

− (1− 1(∥p− cprj∥2 < 1.5)) log(1− σ(H(p))), (1)

where 1 is an indicator function, cprj ∈ R2 is the 2D pro-
jection of the object center, p represents a pixel on the heat
map, σ is the Sigmoid function, H(p) denotes the heat value
at pixel p.

4. D. Compared with NeRF-based Camera
Pose Estimation.

Currently, some methods have successfully applied
NeRF [5] or 3DGS [2] to camera pose estimation tasks,
achieving impressive results. However, our approach dif-
fers significantly in that object pose estimation involves ad-
ditional challenges, such as object detection and separating
the object of interest from the background. Furthermore,
objects often occupy only a small portion of the entire im-
age, resulting in insufficient keypoints and a higher likeli-
hood of weakly textured regions. Additionally, while meth-
ods like iNeRF [9] and iComMa [7] optimize the camera
pose R and t jointly, we decouple R and t and process them
asynchronously, which leads to better results.



5. E. More visual results
Here, we present additional visual results. Figure 1 shows
results on the LM dataset, including models of an ape, cat,
and duck. Figure 2 displays results from real-world scenes
captured by us. For more details, please refer to the demo
video in the supplementary materials.
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Figure 1. Qualitative results on LM dataset. Here we show visualizations of results on LM dataset. Points on different meshes in the same
scene are in different colors which projected back to the image after being transformed by the predicted pose.

Figure 2. Visual results on real scene.
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