Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling
—Supplemental-

Guillem Capellera'> Antonio Rubio?
Institut de Robotica i Informatica Industrial, CSIC-UPC

{guillem.capellera, antonio.agudo}Qupc.edu

1. Unified Uncertainty-Aware Diffusion

In this section we depict the details of our Unified
Uncertainty-aware Diffusion (U2Diff) approach.

1.1. Implementation

U2Diff is trained for 100 epochs on an RTX A6000, with a
batch size of 64 for the Basketball-U dataset and 16 for the
others. Training time varies between 30 to 120 minutes, de-
pending on the dataset size. For the forecasting task in NBA
dataset (see Table 2 of the main paper), individual-based
metrics minADEyy/minFDEy are computed using directly
DDPM sampling. The remaining other cases are computed
using the DDIM, as explained in the main paper.

1.2. Architecture details

The proposed architecture builds upon CSDI framework
[55], introducing key modifications tailored to the task of
multi-agent trajectory completion. The first modification
replaces the original Transformer-based temporal process-
ing module with the Temporal Mamba, specifically de-
signed to model temporal dynamics without the need for
explicit positional encodings. This change addresses the
sub-optimal performance of temporal positional encodings
observed during the denoising process. Additionally, the fi-
nal linear head of the architecture is redesigned to output
both the mean and standard deviation of the predicted noise
distribution, enabling uncertainty estimation. The full ar-
chitecture is depicted in Fig. 1.

Input Embedding As outlined in the main paper, the in-
put embedding tensor J of dimension 7' x N x 256 is
constructed from the concatenation of tensors X and
Xs. The denoising step index s is also embedded into
a 128-dimensional space using a linear layer followed by
a SiLU activation function before being incorporated into
each residual denoising block. Additionally, a learnable em-
bedding of dimension 64 is assigned for each agent, referred
to as emb, and concatenated with the binary mask M, form-
ing the mask/embedding tensor, denoted as M,,,p.
Residual Denoising Block Each residual denoising block

2 Antonio Agudo*

2Kognia Sports Intelligence

Luis Ferraz

{antonio.rubio, luis.ferraz}@kogniasports.com

processes three inputs: the embedding tensor J, the em-
bedded denoising step s, and the mask/embedding tensor
M. First, the embedding of s is projected to a 256-
dimensional space using a linear transformation to align
with the dimensionality of J. This transformed embedding
is then summed to each state in J. Next, the resulting ten-
sor passes through the Social-temporal Block (see Fig. 1),
which sequentially applies the Temporal Mamba and the
Social Transformer. The output tensor from this block is
projected to a 512-dimensional space. In parallel, the ten-
sor Mg,,; is also embedded into the same 1" x N x 512
dimensional space. These two tensors are summed to form
the input to the next stage.

This combined tensor is processed by a Gate-filter
Block. Here the tensor is split into two components: Gate
and Filter, both of size T' x N x 256. The Gate is passed
through a sigmoid activation, while the Filter is passed
through a hyperbolic tangent (Tanh). The two resulting ten-
sors are state-wise multiplied (Hadamard product) and then
projected back into a 512-dimensional space via a linear
transformation. The output of the Gate-filter Block is split

into two tensors of size T' x N x 256. The first tensor is

added to the original J, producing a refined version of J
that is passed to the next residual denoising block. The sec-
ond tensor serves as the skip connection output, Jyp, of the
current residual denoising block.
Output tensor The Jy, outputs from all residual denois-
ing blocks are summed together and passed through a linear
layer followed by a ReLU activation function. This opera-
tion produces a tensor of dimension 7"x [NV x4. This tensor is
further split into two tensor of size 7' x N x 2 each: predicted
mean noise, representing the central tendency of the noise
distribution €5 (X, s, X“°), and the predicted standard de-
viation €j (X, s, X), obtained after applying a Sigmoid
function to bound the values within the interval (0,1). Both
tensors are symbolized as p and o in Fig.1.

This design ensures that the model not only reconstructs
trajectories but also quantifies uncertainty at each predicted
state by modeling the noise distribution with a diagonal co-
variance structure, as explained in the main paper.

'\m

> Memp

[T, N, 65]

Lna:A

%LL P
[128]

Lna:—

RLU

[T, N,4] [T, N, 256)

=

Social-temporal (
Block
Gate

[Temporal mpora_l el
ransformer
[T,N,256 > [T, N,256] | |

[T, N, 256]

[T, N,512] [T, N, 256]

2z
g
g

Figure 1. Unified Uncertainty-aware Diffusion Model (U2Diff)

1.3. Architecture ablation

The main paper provides an ablation analysis on setting
A = 0 or training from scratch, demonstrating the influence
of the proposed loss function. Here, we present a detailed
ablation study focusing on the key architectural components
of U2Diff to further substantiate their contributions.

Table 1 reports results using the minSADEy; metric
across all datasets for the following configurations: w/o TM
(without the Temporal Mamba) which is replaced with a
Transformer Encoder, reverting to as the original design in
CSDI [55], and w/o ST (without Social Transformer) re-
sponsible for encoding agent interactions.

We showcase the importance of replacing Temporal
Mamba by transformers to enhance significantly the perfor-
mance with respect the original CSDI [55]. Also we show
the extreme importance in encoding the agents interactions
with the Social Transformer in our multi-agent domain.

U2Diff Basketball-U Football-U Soccer-U NBA

(Feet) (Yards) (Pixels) (Meters)
w/o TM (CSDI [55]) 3.74 2.70 58.78 1.73
w/o ST 4.06 475 96.66 1.92
Ours (A = 0) 3.10 2.37 51.27 1.50
Ours 3.13 2.35 51.14 1.48

Table 1. Ablation study on U2Diff using the minSADEy, |
metric. The results are presented across all evaluated datasets.

2. Rank Neural Network

This section provides an in-depth explanation of the Rank
Neural Network (RankNN) approach.

2.1. Implementation

During training, we generate X = 20 modes online us-
ing the U2Diff model with trained and frozen weights. The
RankNN architecture is trained using a batch size of 32

scenes for 20 epochs. Depending on the dataset, each epoch
on a RTX A6000 takes between 30 and 180 minutes.

To ensure convergence in Basketball-U and Soccer-U
datasets, where stochasticity posed challenges, we first pre-
trained RankNN using online generations from a subop-
timal U2Diff model trained with a batch size four times
larger. Since the suboptimal model produces more distin-
guishable variations in quality, this pretraining phase makes
it easier for RankNN to learn meaningful ranking patterns
before fine-tuning on higher-quality generations.

2.2. Architecture details

To complement the explanation provided in the main paper,
Fig. 2 presents a visual diagram of the RankNN architec-
ture. Similar to U2Diff, the Social-Temporal operation in-
volves sequential processing through the Temporal Mamba
and Social Transformer modules.

2.3. Architecture ablation

We perform an ablation study on the RankNN architecture,
presented in Table 2, using the Spearman correlation coeffi-
cient (p) as the evaluation metric to measure the alignment
between e and SADE. The study evaluated the following
configurations: w/o TM w/o ST skips the Social-temporal
Block entirely, bypassing both Temporal Mamba and Social
Transformer processing; w/o TM excludes the Temporal
Mamba processing, while retaining the Social Transformer;
w/o ST excludes the Social Transformer processing, while
retaining the Temporal Mamba; w/o MST skips the Multi-
scene Transformer processing; and w/o VAR removes the
predicted variance Var(Xg) from the input to RankNN, us-
ing only the mean predicted locations locations X and the
binary mask M. The last configuration reduces the input
tensor from K X T'x N x5to K x T x N x 3.

The results emphasize the importance of processing
states through the Social-Temporal Block, demonstrating

XbVar(xh)

e S *
[T, N,5]
X3, var(x3)
—e— e | —
[T, N,5]
X3, Var(x)

R
X, var(x)

[T, N,5]

Social-temporal
Block
Temporal | Social
Mamba Transformer

[T, N,64] [T,N,64]

Multi-scene Linear + ReLU
Transformer +Softmax

(K1)

Figure 2. Rank Neural Network architecture (RankNN).

the critical contributions of both the Temporal Mamba and
the Social Transformer. Furthermore, the w/o MST con-
figuration results in sub-optimal performance, particularly
on the Football-U dataset, underscoring the value of Multi-
scene Transformer processing. Finally, the w/o VAR con-
figuration highlights the essential role of the predicted vari-
ance Var(Xg) from U2Diff.

RankNN Basketball-U Football-U Soccer-U NBA
w/o TM w/o ST 0.28 0.37 0.31 0.40
w/o TM 0.35 0.50 0.54 0.45
w/o ST 0.39 0.51 0.34 0.45
w/o MST 0.52 0.47 0.65 0.50
w/o VAR 0.54 0.56 0.55 0.50
Ours 0.56 0.59 0.72 0.51

Table 2. Ablation study on RankNN using the Mean of Spear-
man correlation coefficient (o 7). The results are presented
across all evaluated datasets.

3. Qualitative results

We present additional qualitative results in Fig. 3, which
extends Figure 4 from the main paper. In this figure, we
compare the performance of our method with LED[38] and
UniTraj[60] across all four datasets. Notably, our method
outperforms LED in capturing the ball-possessor relation-
ship, a key aspect of multi-agent sports scenarios. We
explicitly highlight the ball-possessor with a pink rectan-
gle, making it easier to visualize how different methods
handle this critical interaction. Regarding the completion
tasks, our method shows better alignment of the predictions
with the ground truth, especially in the already observed-
reconstructed states, compared UniTraj.

In addition, we include the variant Ours-20, which rep-
resents the distribution of predictions over 20 sampled tra-
jectories. This variant serves to highlight the alignment be-
tween the predicted variance from our model (Ours) and the
sampling approximation (Ours-20), demonstrating how our

approach effectively captures uncertainty in trajectory pre-
dictions.

UniTraj Ours

S R
SN CRE g

¥oF R R

W 15 w

3 le R s

~Ours - 20

urs
Basketball-U Basketball-U

Basketball-U

A
¥
) £)
G UniTraj W O. ¥ Ours Ours - 20
“# Basketball-u |(F) " Basketball-U Basketball-U
ST " Ours e i =)

Figure 3. Qualitative comparisons in trajectory completion and forecasting. Ground truth player locations are shown in bright blue
and pink, and the ball in green. Model input observations are represented in white. In LED, Unitraj and Ours, the predicted mode with
the best minSADEy is shown, with players in dark blue and pink, and the ball in yellow. Our model’s predictions also include estimated
state-wise variances. In Ours-20, the prediction distribution over 20 samples is illustrated, including upper and lower bound modes.

	Unified Uncertainty-Aware Diffusion
	Implementation
	Architecture details
	Architecture ablation

	Rank Neural Network
	Implementation
	Architecture details
	Architecture ablation

	Qualitative results

