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A. Proof of Theorem 1
Theorem 1. Given a linear regressor f(a,x) with train-
able parameters a = (aj)

M
j=1, let g(xi) = (gj(xi))

d
j=1 be

the gradient of a w.r.t. to xi, and â = a − η
∑

i gj(xi)
the updated parameters with learning rate η. Denote µj =
1
M

∑
i gj(xi), σj =

√∑
i(gj(xi)− µj)2. Then, for any η,

the total training loss Lf (X,y; â) = 1
2

∑
i(â

⊤xi − yi)
2

of f is bounded by:

Lf (X,y; â) ≤ 1

2

M

d∑
j=1

[
σ2
j + ((Mη − 1)µj)

2
] .

(1)

Note. There is an error in the proof of Theorem 3.1,
in [9]. Going from the fourth to the fifth line of Eq. 23, the
sum over i on the third term is missing and it should, in-
stead, be

∑
ij η

2M2µ2
j . Additionally, the 1/2 factor does

not multiply all terms, when instead it should. We thus
provide the correct proof for the theorem with a resulting
corrected upper bound:

Proof. Given a training sample (xi, yi), with ||xi|| = 1, the
gradient of the MSE-based loss function L defined in Eq. 3
w.r.t. a when taking (xi, yi) as input is:

g(xi) =
∂L(yi, f(xi;a))

∂a
= xix

⊤
i a− yixi (11)

We note that:

(a− g(xi))
⊤xi − yi = a⊤xi − a⊤xix

⊤
i xi + yix

⊤
i xi − yi

= a⊤xi − (a⊤xi)(x
⊤
i xi)

= a⊤xi − a⊤xi

= 0 =⇒ yi = (a− g(xi))
⊤xi

(12)

Then the total training loss among all training samples is
given by:

M∑
i=1

1

2

(
â⊤xi − yi

)2
(13)

By using Eq. 12, we can rewrite Eq. 13 as follows:
M∑
i=1

1

2

(
â⊤xi − yi

)2
=

M∑
i=1

1

2

(
â⊤xi − (a− g(xi))

⊤xi

)2
=

M∑
i=1

1

2

(
(â− a+ g(xi))

⊤xi

)2
(14)

Recall the assumption that â = a − η
∑

i g(xi); we
rewrite Eq. 14 as follows:

M∑
i=1

1

2

(
â⊤xi − yi

)2
=

M∑
i=1

1

2

(g(xi)− η
∑
i

g(xi)

)⊤

xi

2

(15)
According to the Cauchy–Schwarz inequality and ∥xi∥ =
1, the total training loss is bounded by:

M∑
i=1

1

2

(
â⊤xi − yi

)2
≤

≤ 1

2

M∑
i=1

∥(g(xi)− η
∑
i

g(xi))∥2 · ∥xi∥2

=
1

2

M∑
i=1

∥(g(xi)− η
∑
i

g(xi))∥2

=
1

2

M∑
i=1

d∑
j=1

(gj(xi)− ηMµj)
2

=
1

2

M∑
i=1

d∑
j=1

(
[gj(xi)]

2 − 2ηMµjgj(xi) + η2M2µ2
j

)
(16)

=
1

2

(∑
ij

[gj(xi)]
2 + η2M3

∑
j

µ2
j − 2η

1

M

∑
ij

(M2µjgj(xi))

)

=
1

2

(∑
ij

[gj(xi)]
2 − 2ηM2

∑
j

µ2
j + η2M3

∑
j

µ2
j

)

=
G

2
− η

2
M2(2− ηM)

∑
j

µ2
j .

As G =
∑

j

∑
i[gj(xi)]

2 =
∑

j(Mµ2
j + Mσ2

j ). Then
we can rewrite:

min
a

∑
i

L(yi, f(xi;a)) ≤

1

2
M

∑
j

(
σ2
j + (M2η2 − 2Mη + 1)µ2

j

)
. (17)

This term is non-negative for all η, therefore it decre-
seases by decreasing µj and σj , for any j. Please note that
for η = 1

M our bound reduces to Eq. 6 of ZiCO.

This result is supported by Fig. 5. Following [9] we
built the same experiment setup: we randomly sample 1000
training images from MNIST dataset and normalize them
with their L2-norm to create the training set S. With a
batch of 1, we train the network for one epoch, compute
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Figure 5. Toy example for the positive correlation of µ and the
loss L for 1000 linear networks trained for one epoch on M =
1000 samples with different η.

the gradient w.r.t the network parameters for each individ-
ual sample, and update the weights with a learning rate
η = { 1

10M ; 1; 3
M } for three different experiments to provide

evidence that our result is valid for a range of η. We com-
pute the square sum of mean gradients (x-axis in the plot)
and the total loss (y-axis in the plot). We repeat the process
1000 times on the same S, each time by randomly sampling
a different initialization strategy among Kaiming Uniform,
Kaiming Normal, Xavier Uniform, and Xavier Normal. The
plots show a clear positive correlation for the linear network
among the square sum of mean gradients and the loss, as
supported by our bound.

B. Overview of the benchmarks
In our experiments, we evaluate the proxies over 14 differ-
ent tasks and across 6 different search spaces (see Fig. 6).
NasBench-101 [17] is a cell-based search space consist-
ing of 423 624 architectures. The design is thought to in-
clude ResNet-like and Inception-like DNNs trained mul-
tiple times on Cifar-10. In our full evaluation (see C for
details) we sampled and ranked 10 000 architectures from
this search space. NasBench-201 [4] is a cell-based search
space composed of 15 625 architectures (6 466 of which
are non-isomorphic) trained on 3 different tasks: Cifar-10,
Cifar-100 and ImageNet-16-120. In our full evaluation, we
ranked all 15 625 architectures. NasBench-301 [18] (which
is not depicted in Fig. 6) is a cell-based search space cre-
ated as a surrogate NAS benchmark for the DARTS search-
space. DARTS is therefore composed of normal and reduc-
tion cells for a total of 1018 different architectures trained on
Cifar-10. In our full evaluation, we ranked 11 221 architec-

tures. TransNAS-Bench-101 [5] is composed of a “Macro”
(with 3256 architectures) and a “Micro” (cell-based) (with
4096 architectures) search space. Both Macro and Micro
architectures are trained over 7 different tasks taken from
the Taskonomy dataset. In our evaluation, we ranked all
the 3256 + 4096 architectures. Finally, Autoformer [3] is a
one-shot architecture search space for Vision Transformers.
We sampled 2000 architectures from the “Small” search-
space definition with Embedding dimension (320, 448, 64),
Q − K − V dimensions (320, 448, 64), MLP Ratio (3, 4,
0.5), Head Number (5, 7, 1), and Depth Number (12, 14,
1). The tuples of the three values in parentheses represent
the lowest, highest, and steps values. We trained the 2 000
architecture on Cifar-10, Cifar-100, ImageNet-1k, SVHN,
Pets and Spherical-Cifar100 datasets.

B.1. Autoformer Training
We trained the Autoformer-Small search-space on two
A100 Gpus with 80GB of memory each. We followed the
standard training procedure introduced in [3] and trained
the One-Shot super network on ImageNet-1k splitting the
images in 16 × 16 patches. The training was repeated
three times with the weight-entanglement strategy intro-
duced in [3], each time with 500 epochs (with 20 warmup
epochs), an AdamW optimizer, 1024 batch size, lr=1e-3,
cosine scheduler, weight-decay=5e-2, 0.1 label smoothing
and dropout of 0.1. We used the average of the three runs as
a test accuracy. The super network has been subsequently
fine-tuned on Cifar-10, Cifar-100, Pets, SVHN, and Scifar-
100 following the standard DeiT strategy [14]. The 2000
architectures were sampled from the super network after
training and directly evaluated with no further fine-tuning
on the target dataset.

C. Full search-space
This section extends the experiments from Sec 4.1. For each
benchmark and proxy we evaluated the Spearman ρ corre-
lation over a larger collection of architectures, i.e. 10 000
fro Nasbench-101, 15 625 for NasBench-201, 11 221 for
NasBench-301, 3256 for Tnb101-Macro, 4096 for Tnb101-
Micro, and 2000 for Autoformer (see Fig. 7). Most metrics
keep stable performance compared to Fig. 3 (that has the
results for 1000 architectures), with slightly decreased val-
ues for SWAP and ZiCO and a large ρ drop for reg-SWAP
which now appears in the first half of the rows. We also
present in Fig. 8 a visual comparison between L-SWAG
correlation, ZiCO [9], SWAP [11] and the simple metric #
parameters for TransNasBench-101 Macro Normal search-
space. The plots display the predicted network rankings
vs. the ground-truth ranking for 1000 architectures. We
compare L-SWAG against ZiCO and SWAP as they are
the metrics most related to our contribution. We display
the results for Macro Normal as it represents a challenging



(a)

(b)

Figure 6. Overview of the deployed datasets (Fig. 6a) and search spaces (Fig. 6b) utilized in our work. We borrow the search-space images
from the original NAS benchmark papers [3–5, 17].

benchmark where the benefits of L-SWAG can be better ap-
preciated. Fig. 8a and 8b produce incorrect predictions fre-
quently, leading to low-accuracy networks that are highly
ranked and vice-versa. L-SWAG shows the strongest corre-
lation with the ground truth visible through a reduced width
across line y = x compared to SWAP.

D. Details from Section 3.1
This section extends the layer-selection choice (Ap-
pendix D.1) with the complete set of plots for the gradi-
ent statistics behavior introduced in Sec. 3.1, quantitative
results on the percentiles ablation depicted in Fig. 2a, and
details of the gradient statistics across networks clustered by
depth. Appendix D.2 details the choice of direct composing
Λ and Ψ in Eq. (1) through multiplication.

D.1. Layer-choice
We organized the plots in Fig. 9 by aggregating search-
spaces with similar behavior. These graphs depict the mean
and standard deviation of 1

Λ (introduced in Eq. (1)) across
1000 randomly sampled networks. The goal is to highlight

the intensity variation across different percentiles. The anal-
ysed search-spaces share different characteristics in the in-
tensity trend, with Fig. 9b displaying NB301 periodic be-
havior, Fig. 9a highlighting three peaks (percentile 3, 7,
and 10) in NB201, Fig. 9c, Fig. 9e and Fig. 9g presenting
a unique peak shifted towards the last percentiles, and fi-
nally with Fig. 9f and Fig. 9d with an ascending intensity. If
we couple these plots with the quantitative results in Tab. 5
which ablates each percentile, and their visual representa-
tion in Fig. 2a of the main paper, a clear match between the
intensity of 1

Λ and the Spearman ρ correlation emerges. At
this point, one may argue that the influence of the gradi-
ent statistics varies depending on the network depth, i.e. we
cannot average 1

Λ at the 8th percentile in a network with
depth L = 100 with 1

Λ at the 8th percentile in a network
with depth L = 300. To clear any doubt, we show in Fig. 10
the same results of Fig. 9 obtained by averaging only across
networks with a comparable depth. We provide the exam-
ple for Micro AutoEncoder search space as it represents the
trend of all benchmarks. Comparing Fig. 9e with Fig. 10 no
substantial differences are observed.



Figure 7. Spearman rank correlation coefficient between ZC proxy values and validation accuracies. Results were obtained from 5 multiple
runs. Rows and columns are ordered based on the mean scores. This represents the results of Fig. 3 obtained for a larger number of
architectures detailed in Appendix B.

(a) # Params. (b) Zico. (c) SWAP. (d) L-SWAG.

Figure 8. Visual comparison of some ZC-proxy methods in terms of predicted ranking (x− axis) and validation accuracy (y − axis) on
TransNasBench-101 Macro Normal search-space. Each figure reports the Spearman ρ correlation coefficient.

D.2. Multiplication

In Eq. (1) we directly combined Λ and Ψ through multi-
plication. As different metric combination strategies have
been introduced in the literature, in this section we moti-
vate such a choice. [2] combined the ranks of architectures
by averaging them across the constituent metrics, a strat-
egy we refer to as “RankAve”. The advantage of RankAve
lies in its equal weighting of contributions from each met-
ric. However, this method also comes with several limita-
tions. While rank aggregation is viable for certain search
spaces and algorithms, it becomes impractical in many sce-
narios [10]. Additionally, it is an indirect approach and ar-
guably does not create a unified metric but instead offers
a way to merge metrics. Similar to the method proposed
in [15], we consider addition and multiplication as alter-
native approaches. Consider two arbitrary metrics, τi and
τj , assumed to be independent random variables, where the
samples represent evaluations of a network. For k ∈ i, j,
we define µk = E[τk] and σ2

k = Var(τk). Starting with ad-
dition, we examine how to combine these metrics such that

neither dominates the variance.

Var(τi + τj) = σ2
i + σ2

j .

But what is the effect of the variance on the rankings?
Suppose that σi ≫ σj , then [7]:

P
(
|(τi + τj)− (µi + µj)| ≥ k

)
≤

σ2
i + σ2

j

k2
= O(σ2

i )

This suggests that the distributional characteristics of τi+τj
are primarily influenced by τi, resulting in the overall rank-
ing of architectures being controlled by τi. Since it is im-
probable that the variances of the metrics are similar, the
metric with the greater variance will dominate. Having ex-
cluded addition, we now proceed to evaluate multiplication:

Var(τi · τj) = σ2
i σ

2
j + µ2

jσ
2
i + µ2

iσ
2
j + µ2

iσ
2
j

+ σ2
i σ

2
j

[
1 +

(
µj

σj

)2

+

(
µi

σi

)2]
(19)
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Figure 9. Average gradient statistics across 1000 networks over different depth percentiles. This results completes Fig. 2 in the main paper.

NB201 NB101 NB301 TNB101-Micro TNB101-Macro

Percentile C10 C100 IN16-120 C10 C10 AE Room Obj. Scene Jig. Norm. Segm. AE Room Obj. Scene Jig. Norm. Segm.

1 0.720 0.752 0.760 0.665 0.568 0.310 0.294 0.423 0.596 0.465 0.620 0.510 0.720 0.030 0.890 0.745 0.780 0.700 0.650
2 0.670 0.710 0.723 0.690 0.564 0.200 0.440 0.530 0.711 0.580 0.750 0.590 0.660 0.631 0.700 0.830 0.720 0.800 0.810
3 0.711 0.750 0.760 0.702 0.565 0.180 0.410 0.490 0.680 0.520 0.740 0.700 0.730 0.630 0.590 0.780 0.680 0.840 0.800
4 0.720 0.754 0.763 0.684 0.554 0.190 0.390 0.470 0.670 0.510 0.740 0.704 0.640 0.629 0.620 0.800 0.680 0.740 0.810
5 0.690 0.730 0.743 0.687 0.549 0.240 0.420 0.468 0.690 0.540 0.730 0.690 0.580 0.628 0.670 0.810 0.690 0.610 0.740
6 0.720 0.751 0.759 0.680 0.554 0.170 0.390 0.480 0.680 0.520 0.720 0.695 0.620 0.628 0.690 0.870 0.710 0.670 0.740
7 0.720 0.751 0.760 0.690 0.550 0.110 0.390 0.470 0.670 0.510 0.630 0.690 0.530 0.625 0.540 0.750 0.730 0.630 0.710
8 0.655 0.690 0.710 0.685 0.540 0.060 0.420 0.490 0.690 0.530 0.530 0.690 0.550 0.625 0.590 0.760 0.630 0.630 0.660
9 0.717 0.749 0.757 0.682 0.540 0.080 0.380 0.460 0.660 0.500 0.510 0.750 0.520 0.627 0.600 0.760 0.700 0.550 0.710
10 0.724 0.760 0.764 0.694 0.547 0.000 0.280 0.413 0.640 0.450 0.627 0.520 0.000 0.020 0.630 0.769 0.740 0.000 0.540

ALL 0.710 0.740 0.750 0.651 0.550 0.320 0.330 0.480 0.680 0.520 0.680 0.700 0.700 0.627 0.860 0.780 0.735 0.770 0.780

Table 5. Collection of Spearman’s ρ correlation results obtained for the different percentiles. Each row represents an interval, e.g. 1 refers
to L-SWAG computed with l̂ = 0 and L̂ = 1, (meaning that for each row we calculated the metric with two percentiles). “ALL” refers to
the metric computed considering all the layers in a network. We highlight in bold the best results.

This highlights that the relationship between the met-
rics plays a more intricate role in determining the rank-
ings. While not guaranteed, if the metrics’ µk and σk

scale proportionally and exhibit similar distributional prop-
erties, this approach ensures that neither metric dispropor-
tionately dominates the variance. However, a legitimate
concern arises: even when using metrics with minimal cor-
relation, the assumption of independence may not always
hold. Despite these limitations, we find evidence that, for
Λ and Ψ, the contributions of the individual components
to the combined scores remain fairly balanced. Although
more sophisticated operations than multiplication likely ex-
ist for direct composition, this analysis is intended solely
as a proof of concept. An additional observation is that di-
rectly multiplying the final ΛL̂ and Ψ results in the loss of
much of the layer-wise information that has been gathered.
This strengthens the case for our layer-wise multiplication
via ΨL̂, effectively performing a dot product of the layer-

specific values. Such a layer-wise composition enables an
assessment of individual layers based on their specific con-
tribution to the network.

E. Details from Sec. 3.2
This section gives the details for the ZC-proxies z2, z3 that
were chosen according to LIBRA algorithm and that pro-
vided the results of Tab 1. The first ZC-proxy z1 can be
simply derived from Fig. 3 by looking at each column (rep-
resenting the benchmark) for the highest Spearman’s ρ cor-
relation value. The metric that leads to the highest ρ is se-
lected as z1. The second ZC-proxy z2 is selected, according
to Algorithm 1, by choosing among a filtered set of ZC-
proxies zh. The zh with the lowest information gain IG
between z1 and zh becomes z2. The filtered set is obtained
by discarding ZC-proxies with a Spearman’s ρ correlation
below 0.1 points with respect to z1 (for all cases otherwise
specified). Following this rule, we selected z2 = jacov for
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Figure 10. Gradient statistics for different networks clustered by depth (20, 30, 40 and 60 layers) in TransBench101-Micro Autoencoder
search space.

NB201-C10, z2 = zico for NB201-C100, z2 = nwot for
NB201-Imnet16-120, z2 = swap for NB301-C10, z2 =
jacov for TNB101-micro-autoencoder, where the filtered
set was obtaining with a tolerance of 0.2 z2 = epe−nas for
TNB101-micro-room, z2 = l − swag for TNB101-micro-
object, z2 = zen for TNB101-micro-scene, z2 = zico
for TNB101-micro-jigsaw, z2 = jacov for TNB101-micro-
normal, z2 = l − swag for TNB101-micro-segmentation,
z2 = nwot for TNB101-macro-autoencoder, z2 = nwot
for TNB101-macro-room, where the filtered set was obtain-
ing with a tolerance of 0.2 z2 = swap for TNB101-macro-
object, z2 = swap for TNB101-macro-scene, z2 = swap
for TNB101-macro-jigsaw, z2 = nwot for TNB101-macro-
normal, z2 = nwot for TNB101-macro-segmentation. Al-
though the choice in some cases (e.g. Macro search-space)
was restricted only to two/three ZC-proxies, as most of the
zh had correlation below ρ = 0.4, LIBRA could success-
fully identify the optimal choice. Let us take the example
of TNB101-macro-jigsaw: the possible zh are nwot with
ρnwot = 0.76, swap with ρswap = 0.74, and flops with
ρflops = 0.79. If we simply chose the metric with the high-
est ρ (flops) we would obtain a ρz1,z2 = 0.79, while LI-
BRA returns ρz1,z2 = 0.81. Finally, in Tab. 6 we present
the Pearson’s correlation between all ZC-proxies and our
chosen bias, i.e. the number of parameters. We highlight in
bold the ZC-proxy that was chosen according to LIBRA.

F. Influence of the mini-batch size and of ran-
dom initialization.

We run ablation on the batch size for all measures, includ-
ing our L-SWAG. We report a representative result for each
search-space in Fig. 11. Compared to the other measures in
the plots, L-SWAG stabilizes after batch 32 saturating (dif-
ferently from ZiCo which slightly deteriorates, or to SWAP
which in fig. 11a, 11b and 11c has its peak at B=16). We
also noticed plain being highly unstable depending on the
batch-size. Other metrics (e.g. Fisher, # flops etc.) with
constant values across batches were simply not plotted. We
also tested the measure with 3 different random initializa-
tions (Xavier, Kaiming and Gaussian) and found the metric
to be robust with a std σ = 0.02.

G. Information theory
For the sake of clarity, we provide full details from Sec. 4.2
and provide the definition of Entropy borrowed from [8].
Given two variables y and zi, the conditional entropy of y
given zi is defined as:

H(y|zi) = E[− log(p(y|zi))]

= −
∑

z∈Z,y∈Y
p(z, y) log

p(z, y)

p(z)
(20)

for two support sets Y,Z . If we consider entropy as a mea-
sure of information—or equivalently, the uncertainty as-
sociated with a random variable—conditional entropy re-
flects the remaining uncertainty after conditioning on an-
other variable. Specifically, H(y | zi) possesses sev-
eral desirable properties: (1) H(y | zi) = 0 if and only
if zi completely determines y; (2) H(y | zi) = H(y)
if and only if y and zi are entirely independent; and (3)
H(y | zi1, zi2) = H(y, zi1, zi2) − H(zi1, zi2). This al-
lows for straightforward computation of conditional entropy
when conditioning on multiple random variables. Thus, it
serves as an effective metric for quantifying remaining un-
certainty or incomplete information. Following the above
definition, would require all random variables to be discrete
to compute the conditional entropy, which is not our case.
Similarly to [8], to properly implement conditional entropy
we use Sturge’s rule [12] to discretize the float values de-
scribing zis. The heuristic to choose the number of bins is:

nbins = round(1+3.322*log(N)),

with N = sample size.

Information about y does not reveal the exact validation ac-
curacy but rather the interval in which the value falls.

H. LIBRA-NAS and L-SWAG-NAS: more re-
sults

We extended the experiments presented in Sec. 4.2 for the
Autoformer search space on ImageNet-1k. Rather than
comparing with other training-free guided search methods,
the focus of this set of experiments is to assess the bene-
fit of ZC-NAS compared to other search methods deployed



NB201 NB101 NB301 TNB101-Micro TNB101-Macro

Name C10 C100 IN16-120 C10 C10 AE Room Obj. Scene Jig. Norm. Segm. AE Room Obj. Scene Jig. Norm. Segm.

epe-nas 0.09 0.06 0.09 -0.02 0.07 0.43 0.25 0.22 0.30 0.17 0.40 0.32 0.13 0.12 0.10 0.11 0.02 0.12 0.26
fisher 0.16 0.15 0.07 0.11 0.12 0.16 0.10 0.08 0.18 0.02 0.12 0.10 0.03 0.04 0.02 0.09 0.10 0.16 0.20
flops 0.99 0.99 0.99 1.00 0.98 0.96 0.95 0.99 0.99 1.00 0.98 0.99 0.34 0.49 0.54 0.53 0.51 0.39 0.45
grad-norm 0.33 0.40 0.37 0.30 0.55 0.51 0.66 0.70 0.68 0.56 0.47 0.65 0.49 0.34 0.31 0.30 0.20 0.32 0.01
grasp 0.05 0.03 0.13 -0.03 0.16 0.18 0.12 -0.20 -0.23 -0.35 0.20 0.15 0.08 0.16 0.11 0.06 0.08 -0.21 -0.04
l2-norm 0.69 0.69 0.69 0.62 0.99 0.64 0.17 0.79 0.70 0.01 0.64 0.51 0.49 0.24 0.76 0.45 0.22 0.85 0.47
jacov 0.06 0.06 0.06 -0.18 0.11 0.17 0.00 -0.03 -0.00 0.41 0.15 0.18 0.09 0.09 0.07 0.23 0.14 0.32 0.11
nwot 0.51 0.51 0.50 0.74 0.95 0.42 0.35 0.46 0.40 0.35 0.07 0.35 0.19 0.24 0.31 0.30 0.21 0.34 0.00
params 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
plain 0.32 0.10 0.23 0.03 0.39 0.12 0.15 0.05 0.08 0.50 0.19 0.10 0.09 0.08 0.17 0.11 0.34 0.06 0.49
snip 0.46 0.45 0.42 0.44 0.55 0.49 0.33 0.22 0.19 0.29 0.55 0.21 0.39 0.28 0.55 0.45 0.49 0.68 0.53
synflow 0.24 0.24 0.24 0.57 0.07 0.41 0.05 0.45 0.40 0.44 0.47 0.11 0.27 0.12 0.23 0.21 0.35 0.41 0.23
reg-swap 0.29 0.30 0.21 0.30 0.44 -0.06 0.11 -0.09 0.23 -0.78 0.09 -0.15 0.03 -0.09 0.11 -0.02 0.10 0.05 0.03
zico 0.60 0.60 0.60 0.54 0.97 0.55 0.48 0.54 0.80 0.44 0.47 0.48 0.72 0.59 0.46 0.15 0.41 0.45 0.30
swap 0.50 0.51 0.47 0.44 0.50 0.01 0.35 0.30 0.35 0.21 0.35 0.29 0.32 0.41 0.54 0.12 0.11 0.39 0.36
l-swag 0.23 0.24 0.24 0.19 0.32 0.00 0.08 0.15 0.19 0.17 0.15 0.21 0.02 0.16 0.18 0.22 0.10 0.21 0.11
val-acc 0.41 0.55 0.57 0.47 0.52 0.18 0.40 0.53 0.54 0.43 0.44 0.59 0.05 0.07 0.24 0.41 0.16 0.40 0.08

Table 6. Pearson correlation coefficients between predictors and our bias metric (# of Parameters) on different benchmarks. We highlight
in bold the value corresponding to the z3 we chose for LIBRA.
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Figure 11. Spearman ρ coefficient consistency of ZC-proxies across different batch sizes.

for the Autoformer search space, including simple random
search. Although in Tab. 8 random search still represents
a strong alternative, with the best-found architecture af-
ter three runs having a test error of 19 %, both L-SWAG
NAS and LIBRA-NAS largely improves performance of the
found architecture with a negligible search-time. Given the
large save in computation time, we hope this set of exper-
iments will further convince the exploration of ZC-proxy

design for the ViT search space, to expand research in the
video domain. We run additional experiments on Burger-
Former [16] for object detection and instance segmenta-
tion on COCO dataset and will add the following results in
Sec. H SM. We chose [16] to be comparable with ϵ-GSNR
which also validates the metric on these tasks. As ϵ-GSNR,
we deployed the found network from BurgerFormer-S space
(pre-trained on ImageNet 83.5 % acc.) as the backbone for



Backbone AP b AP b
50 AP b

75 APM APM
50 APM

75

ResNet-
50 38.0 58.6 41.4 34.4 55.1 36.7

PoolFormer 40.1 62.2 43.4 37.0 59.1 36.9
Object Swin-T 43.7 66.6 47.7 Instance 39.8 63.3 42.7
Detection ϵ-GSNR 45.0 67.1 49.1 Segmentation 40.7 68.8 43.7

L-SWAG 47.5 71.4 50.3 41.4 69.7 44.2

Table 7. Comparison with models on COCO dataset.

Bij Search approach Params
(M)

Search Time
(GPU days)

Test
Error (%)

AutoFormer
Small
IMNET1k

Weight entanglement
+ evolution 22.9 24 18.3

Random search 23.0 0 19.0
Classical weight

sharing + random† 22.9 - 30.3

Weight entanglement
+ random† 22.8 - 18.7

Classical weight
sharing + evolution† 22.9 - 28.5

ViTAS [13]† 30.5 - 18.0
NASViT-A0[6]† [200-300] - 21.8
L-SWAG-NAS 23.7 0.05 17.8
LIBRA-NAS 23.1 0.1 17.0

Table 8. Further comparisons of networks from the Autoformer
search space optimized by different NAS methods. While in Tab. 2
we mainly compared the search results obtained running the search
algorithm guided by different ZC proxies evaluation, this set of ex-
periments aims instead at showing the benefits of our contributions
with respect to other NAS search methods. Random search is per-
formed three times and the best performance is reported. †Results
were borrowed directly from [3] and for such a reason no search
time is reported, as not available in the original paper.

the Mask R-CNN detector. We used an evolutionary algo-
rithm to search networks within 30M Params.

I. Theoretical intuition behind L-SWAG for
ViT

This brief section aims at delivering the intuition behind the
design of L-SWAG and the motivation of why it works on
ViTs. ViTs use MSA to capture long-range dependencies,
but a common issue is rank collapse, where MSA outputs
converge to rank-1 matrices, reducing representational di-
versity. Activation patterns in MSA reflect self-attention’s
ability to distinguish input tokens. Greater diversity in
these patterns at initialization indicates higher expressivity,
avoiding rank collapse [1]. While GELU is nonlinear, its
smooth transitions still separate input space into “soft re-
gions”, which can be counted like in ReLU.Gradient vari-
ance ensures trainability, as GELU’s smoothness can lead to
gradient issues. Together, they provide a holistic measure of

both expressivity and trainability.
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