
PERSE: Personalized 3D Generative Avatars from A Single Portrait

Supplementary Material

A. Implementation Details
A.1. Avatar Model
A.1.1. Avatar Model Architecture
To model diverse attributes with a single model, our avatar
model follows three-stage deformations proposed in PEGA-
SUS [2] with a few modifications. First, we initialize the
learnable generic canonical points P gc with the vertices of a
FLAME [18] mesh with an open mouth:

P gc = {xgci }i={1···N}, (18)

where N is the number of points. The generical canonical
points P gc are shared start points for all subjects in the syn-
thetic dataset. By deforming the points with subject-specific
latent z as a condition, we obtain subject-specific canonical
points P sc containing the shape of a specific attribute, such
as having long hair or grey cap. The mapping between two
states is defined as an offset of each point Ogc→sc

i , which
is regressed using coordinate-based deformation MLP as
follows:

{Ogc→sc
i ,Osc→fc

i , Ei,Pi,Wi} = MLPd(z,x
gc
i ). (19)

It regresses FLAME LBS weight Wi and blendshapes
{Ei,Pi} of each point jointly, which is crucial to reenact our
avatars into any novel pose and expression. Subsequently,
our avatar model defines a mapping of subject-specific canon-
ical points P sc to the FLAME canonical points P fc for
better fidelity following the previous work [2, 35]. The
mappings between two points are defined as another point
offset Osc→fc

i which is also regressed by the deforming
MLP jointly. The transformation between each state are
summarized as follows:

xsc
i = xgc

i +Ogc→sc
i , (20)

xfc
i = xsc

i +Osc→fc
i . (21)

Finally, the points in the FLAME-canonical space P fc are
deformed into the final posed space P d using Linear Blend
Skinning (LBS) and FLAME parameters {β, θ, ψ} as fol-
lows:

xd− = xfc +BS(β;S) +BP (θ;P) +BE(ψ; E) (22)

xd = LBS(xd−,J(ψ), θ,W), (23)

where xd− denotes the point after applying the blendshapes
and before applying transformation via linear blend skinning.

Similar to PEGASUS [2], we infer the attributes of each
Gaussian, oi (opacity), ri (rotation), si (scale), and ci (color)
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Figure 12. Network Configuration. We show a detailed structure
of the networks of our avatar model: pose-conditioned deformation
MLPpose, canonical MLPc, latent mapping MLPz, and deformation
MLPd.

using a coordinated-based MLP as follows:

{osc
i , r

sc
i , s

sc
i , c

sc
i } = MLPc(z,x

sc
i ). (24)

This canonical MLPc is defined against subject-specific
canonical points and conditioned by latent code z. We
model additional 3D Gaussian change depending on the
pose changes following MonoGaussianAvatar [3]. We cal-
culate the deviation of each Gaussian center between before
and after LBS deformation of (23) and query the change
of each center to an MLP network together with latent z to



estimate pose-conditioned deformation:

∆xi = xd
i − xfc

i , (25)
{∆ri,∆si,∆oi,∆ci} = MLPpose(∆xi, z). (26)

We change all Gaussian parameters except the center xi. The
final deformed Gaussians which are queried in the Gaussian
Rasterizer [16] are as follows:

od
i = ∆oi + osc

i , (27)

sdi = ∆si + ssci , (28)

cdi = ∆ci + csci , (29)

rdi = ∆ri + Rot(rsci ,
∂xd

i

∂xfc
i

), (30)

where Rot(·) denotes multiplying a corresponding rotation
∂xd

i

∂xfc
i

on each quaternion rsci occurred during LBS of (23).
The overall optimizable parameters of our avatar model are
summarized below:

Θ = {MLPc,MLPd,MLPz,MLPpose, {xgc
i }i∈{1···N}}.

(31)
The detailed network structure is shown in Fig. 12.

A.1.2. Training Strategy
We set the first epoch as a warm-up stage for stable optimiza-
tion. During this stage, the pose-conditioned deformation
MLP is disabled, and only the remaining MLPs and points
are optimized. It encourages the deformation module of the
avatar network to generate valid offsets from the generic
canonical space to the final deformed space. We optimize
our avatar model for 112 epochs using DDP with 8 A6000
GPUs, which takes around 2 days.

We follow prior work [3, 35] to iteratively densify the
Gaussians via upsampling every 5 epochs until the number
of points reaches 130,000. Once this target is reached, we
reduce the length of the existing Gaussian attributes’ 3D
covariance by a factor of 0.75, and prune Gaussian attributes
with opacity lower than 0.5 every 5 epochs. To maintain
the point count at 130,000, we additionally upsample new
Gaussian attributes with a fixed radius of 0.004.

A.1.3. Loss Functions
The FLAME loss [3, 35] included in total loss Ltot is regu-
larization enforcing the inferred FLAME blendshapes and
LBS weights (Ê , P̂, Ŵ) of each Gaussian to be close to the
FLAME mesh’s one:

LFLAME =
1

N

N∑
i=1

(λe∥Ei − Êi∥2

+ λp∥Pi − P̂i∥2 + λw∥Wi − Ŵi∥2),

(32)

where E ,P, and W are the pseudo ground truth from the
k-nearest neighbor vertices of the FLAME [18]. This reg-
ularization is important to obtain better reenactment with
unseen pose.

A.2. Finetuning for Interpolated Samples
A.2.1. Preliminaries: DiffMorpher
By viewing a diffusion sampling process as a solution of
ODE, we obtain a deterministic mapping between a latent
variable in the Gaussian distribution ξT ∈ N and an image
I through DDIM forward and inversion [27]:

ξ = DDIMinv(I;W),

I = DDIM(ξ;W),

where W means a pre-trained image diffusion model. By in-
terpolating latents (ξa, ξb) inverted from two images (Ia, Ib),
we obtain semantically meaningful smooth interpolation as
follows:

ξinterp,α = slerp(ξb, ξa, α),

Iinterp,α = DDIM(ξinterp,α;W),

where α is an interpolation weight and slerp(·) is spherical
linear interpolation [26].

DiffMorpher [32] uses personalized diffusion models for
DDIM sampling and inversion, resulting in smoother and
better natural image interpolation. For two images (Ia, Ib),
it trains LoRA [11] on UNet (∆Wa,∆Wb) for each image
and uses the LoRA-integrated UNet for DDIM inversion:

ξa = DDIMinv(Ia;W +∆Wa),

ξb = DDIMinv(Ib;W +∆Wb).

For the forward process on interpolated latent ξinterp,α, it
uses interpolated LoRA with attention interpolation:

Iinterp,α = DDIM(ξinterp,α; Θinterp,α), (33)

where Winterp,α is an interpolated LoRA derived as
Winterp,α = W+∆Wa(1−α)+∆Wbα. For brevity, we
denote the overall interpolation process with DiffMorpher
from two images (Ia, Ib) and a weight α as follows:

Iαi
= DiffMorpherαi

(
Ia, Ib

)
. (34)

A.2.2. DiffMorpher LoRA Optimization
We use DiffMorpher [32] to generate interpolated images,
which serve as pseudo ground truth to fine-tune our avatar
model. Specifically, we select two subjects from the syn-
thetic dataset and fine-tune the model for interpolated ren-
derings between them. To obtain the corresponding pseudo
ground truth images with DiffMorpher, we require a LoRA
for each image.



Training a LoRA for each posed image is computationally
prohibitive considering the number of images in our syn-
thetic dataset. Therefore, unlike vanilla DiffMorpher [32],
which uses a single image, we train LoRA subject-wise us-
ing all animated frames in each subject. The LoRA training
objective is equal to the standard diffusion training objec-
tives [24] as follows:

L(∆Θ) = Eϵ,τ,i[||ϵ− ϵΘ+∆Θ(ξτi, τ, ci)||2], (35)

ξτi =
√
ᾱτξ0i +

√
1− ᾱτ ϵ, (36)

where ξ0i = E(Ii) represents the latent encoded by the VAE
encoder of diffusion model, Ii is the ith animated image of
the subject randomly selected at each iteration, ϵ ∼ N (0, I)
is Gaussian noise, and ξτi denotes the perturbed latent at
diffusion step τ . To avoid confusion with our model’s latent
variable z, we use ξ to refer to the VAE-encoded latents of
the diffusion model here. We train the subject-specific LoRA
with batch size 8 for 5 epochs per subject.

A.2.3. Interpolation Loss Details
To enhance the quality of the interpolated sample and ensure
interpolation smoothness, we calculate reconstruction loss
on the interpolated samples. In every iteration, we randomly
sample two subjects (a, b) from the same category of our
synthetic dataset, referred to here as pivots. Then, we gen-
erate 5 interpolated samples using linear interpolation as
follows:

zα,i = za(1− αi) + zbαi, (37)

where {αi}[i=1···5] are 5 equally distributed interpolation
weights from 1/6 to 5/6. For all 5 interpolated samples,
we compare the rendering with DiffMorpher [32] generated
images as follows:

Îαi
= GSR

(
MΘ(zα,i)

)
, (38)

Iαi
= DiffMorpherαi

(
Ia, Ib

)
, (39)

Linterp =

5∑
i=1

Lpart

(
Mpart ◦ Iαi

,Mpart ◦ Îαi

)
. (40)

As the image Iα generated by DiffMorpher [32] fails to
preserve the identity of the remaining regions, we apply the
loss only to the subpart region Mpart is that changes during
interpolation.

All DiffMorpher inferences and target part segmentations
are performed online during optimization, as the number of
possible pairs is too large to process in advance. We fine-
tune our avatar model using an interpolation loss applied to
40 arbitrary pairs per subject, resulting in a total of 38,600
pairs. In each iteration, we also apply the total loss Ltot to
the pivot subjects (a, b) to preserve their quality.

Category # of attributes w/ portrait-Champ

Hair 395 ✓
Beard 69 ✓
Cloth 57 -

Earrings 59 ✓
Eyebrows 58 -

Headphones 59 ✓
Hat 110 ✓

Mouth 75 -
Nose 75 -

Total 957 -

Table 5. Number of Attributes in Our Synthetic Dataset. We use
portrait-Champ to animate the portrait images when ‘w/ portrait-
Champ ’ is indicated; otherwise, we use LivePortrait [9].

A.3. Synthetic Dataset
A.3.1. Attribute-Edited Portrait Image Generation
The number of attributes in each category is shown in Tab. 5.
While we generate approximately 1k samples to demonstrate
the effectiveness of PERSE, the pipeline can be extended
to produce any desired amount, as our synthetic dataset
generation process is fully automated. We use FLUX with
inpainting controlnet [5] for Image-to-Image (I2I) inpainting
and SDXL with pose controlnet [22, 33] for attribute mask
generation.

A.3.2. Training portrait-Champ

Our portrait-Champ builds upon the architecture introduced
in Champ [36], incorporating modifications to enhance 3D-
awareness and improve reenactment performance. Specif-
ically, we integrate an additional Variational Autoencoder
(VAE) encoder-decoder pair dedicated to normal maps, draw-
ing inspiration from MagicMan [10]. Adopting the dual-
branch strategy proposed in MagicMan [10], we introduce
an additional U-Net for the normal maps. This U-Net shares
all weights with the original RGB U-Net except for the
first layer. The shared layers between the two U-Nets en-
able cross-domain feature integration, allowing the model
to fuse features from both normal map and RGB image. By
combining geometric and visual information, our approach
enhances the geometric awareness of model, resulting in
improved structural coherence.

We replace the original SMPL [19] rendered motion guid-
ance in vanilla Champ [36] with FLAME rendering. Specif-
ically, we employ a monocular face capture method [6] to
extract FLAME parameters [18]. Using these parameters, we
render the FLAME depth map and FLAME normal map. To
provide motion guidance for the body, including shoulders,
which are not covered by FLAME rendering, we supplement
the guidance with full-body keypoints and facial landmarks
inferred from RGB videos using DWPose [30].

We use 5,196 videos from CelebV-Text [31] datasets to
train our portrait-Champ. Following previous work [36], we
train portrait-Champ using 8 A6000 GPUs in two stages:



58,732 iterations with a batch size of 32 in stage 1, and
26,450 iterations with a batch size of 8 in stage 2. In stage
1, we optimize the model using randomly sampled frames
from videos as an image diffusion model. In stage 2, we
train only the temporal motion module with videos while
freezing other modules.

A.3.3. Animating Portrait Images
Enhancing the reenactment capability of our avatar model
requires training videos that cover a wide range of facial
expressions and head poses. We achieve this by animating
portrait images with a motion sequence containing diverse
expressions and poses. To obtain a motion sequence that
satisfies both continuity and the minimal number of frames
required by portrait-Champ, we record a video for this mo-
tion sequence ourselves.

Using a reference portrait image and a predefined mo-
tion sequence in an RGB video, we first generate an ani-
mated portrait video centered on the reference image us-
ing LivePortrait [9]. From this video, we extract normal
maps, depth maps, and facial keypoint motion guidance us-
ing EMOCA [6] and DWPose [30]. With this guidance, we
animate images edited in the hair, hat, and beard attributes
using portrait-Champ. For other facial attributes, we directly
generate RGB videos using LivePortrait [9].

A.4. Attribute Transfer
To transfer facial attributes from in-the-wild images, we
incorporate LoRA layers [11] into the MLP network of the
avatar model and optimize these layers. The LoRA layers
are trained using animated videos generated from input in-
the-wild images. We generate the animated videos following
the procedure outlined in Sec. 4.2 of the main paper. To
ensure only the desired attribute is transferred, we segment
the relevant sub-part using an off-the-shelf segmentation
network [17] and apply a part-wise loss as described in Eq.
(15) of the main paper:

Lpartwise, lora = Lrecon

(
Mpart ◦ Iitw,Mpart ◦ Îattr

)
, (41)

where Iitw represents the image from video animated in-the-
wild portrait image, Îattr denotes the rendered image with
latent zitw regressed by latent mapping MLPz from CLIP
features of input in-the-wild image.

We observe that using only the partwise loss fails to pre-
serve reference identity of our avatar model and collapse the
pretrained latent space. To address this, we introduce a 3D
loss. The 3D loss encourages the LoRA layers in the avatar
model to produce the same output as when the LoRA lay-
ers are absent. Specifically, Gaussian random latent codes
zrandom from the pretrained latent space are sampled and
used as inputs along with the FLAME parameters of an an-
imatable portrait video. The model is trained to minimize
the difference between the outputs of the avatar model with

and without the LoRA layers, ensuring consistency in 3D
Gaussian parameters and 3D positions. Specifically, for the
Gaussian attributes inferred with and without LoRA layers:

{xd
i , r

d
i , s

d
i ,o

d
i ,c

d
i } = MΘ(x

gc
i , zrandom,β,θ,ψ), (42)

{xd
i,lora, r

d
i,lora,o

d
i,lora, s

d
i,lora, c

d
i,lora}

= MΘ+∆Θ(x
gc
i , zrandom,β,θ,ψ), (43)

we calculate the distance between them as follows:

L3d = ∥xd
i,lora − xd

i ∥1 + ∥rdi,lora − rdi ∥1
+∥odi,lora − odi ∥1 + ∥sdi,lora − sdi ∥1 + ∥cdi,lora − cdi ∥1. (44)

The total loss for LoRA layer optimization is defined as
follows:

Ltotal, lora = L3d + Lpartwise, lora (45)

We perform LoRA layer optimization with a learning rate of
1e−4 for 5 epochs.

B. Evaluation Details
B.1. Baseline Implementation Details
To demonstrate our pipeline’s effectiveness, we evaluated
our methods compared to three different methods.

B.1.1. PEGASUS
We train PEGASUS [2] with our synthetic dataset using pub-
licly available code, strictly following the settings described
in the paper, including the latent space configuration and
network configurations. The model is trained using DDP
across 8 RTX 6000 GPUs until convergence. After point ren-
dering with PyTorch3D [23], no additional denoising steps
are applied.

B.1.2. Conditional INSTA (Cond.TA)
To train INSTA with multiple subjects, we introduce a la-
tent condition to the density MLP network, referred to as
Conditional INSTA (Cond.TA). We adopt the PEGASUS [2]
latent configuration to achieve similar sub-part disentangled
control. Since the original density MLP network of INSTA
is too small to encode a thousand of attributes, we increase
the MLP width from 64 to 512 and the depth from 2 to 4.
As this adjustment sacrifices rendering speed and increases
training time, we focus our comparisons solely on quality,
excluding rendering speed. The final Conditional INSTA
model is trained using DDP with 8 RTX 4090 GPUs until
convergence.

B.1.3. Conditional SplattingAvatar (Cond.SA)
Since SplattingAvatar [25] does not include any network for
receiving conditioning, we incorporate an MLP to deform
a single set of shared canonical 3D Gaussians into subject-
specific canonical 3D Gaussians, similar to the approach in



PEGASUS [2]. To ensure a fair comparison, we configure
the MLP with the same size as PEGASUS’s canonical MLP,
providing sufficient capacity to represent all subjects in the
synthetic dataset. The densification interval is increased
from vanilla SplattingAvatar [25] to address the low stability
of optimization in early stages. Densification is halted after
5 epochs, as the gathered gradients do not converge, possibly
due to exposure to different subjects in each iteration. We
adopt the same latent configuration as the PEGASUS model,
and the final Conditional SplattingAvatar model is trained
using DDP on 8 RTX 4090 GPUs until convergence.

B.2. Interpolation Evaluation Details
To evaluate the rendering quality of avatars with unseen
attributes and interpolation smoothness, we sample avatars
from our model using interpolated latent codes. For each
of the 9 categories in our synthetic dataset, we randomly
select 200 subject pairs and generate 9 interpolated latent
codes per pair, following (37). The intervals between the
sampled latent codes are evenly spaced. Each interpolated
latent code is used to render the corresponding avatar in 5
different poses. This process produces 9,000 images per
category and a total of 81,000 images across all categories
for evaluation.

Metrics. We compute FID and KID scores by comparing
our renderings with two different image sets: FFHQ [14]
and our synthetic evaluation dataset, which is built with
the same input reference individual. Specifically, we use
(FIDFFHQ,KIDFFHQ) to asses the realism and quality of
the renderings by comparing with real face images, and
(FIDSYN,KIDSYN) to evaluate identity preservation by com-
parison with the synthetic evaluation dataset.

Since the rendered outputs do not include backgrounds,
we remove the backgrounds of all portrait images in FFHQ
using MODNet [15] before calculating metrics. The syn-
thetic evaluation image sets are constructed with the same
reference image, following our edited portraits generation
pipeline. To prevent potential information leaks, we syn-
thesize 2k novel images using text prompts not included in
the training dataset. This approach provides a more reliable
measurement of identity preservation during attribute editing,
particularly for changes that partially alter identity features,
such as the eyes, eyebrows, and nose, which are challenging
to evaluate with existing identity metrics like ArcFace [7].

B.3. User Studies
We also conduct a user study to evaluate the rendering quality
of interpolated samples, as shown in Fig. 22. Since only
PEGASUS [2] and our method receive votes among the
four methods in preliminary study, we exclude Cond.TA
and Cond.SA from the options. Participants are asked to
choose the better images based on interpolation smoothness

Method
Accuracy Naturalness

PSNR↑ SSIM↑ LPIPS↓ FID↓ KID↓
Moore-AnimateAnyone [12, 20] 17.77 0.6841 0.2536 146.59 0.0530
MimicMotion [34] 17.27 0.6641 0.3012 178.87 0.0980
MegActor-Σ [28, 29] 17.89 0.6986 0.2599 155.04 0.0572

Ours (portrait-Champ) 20.58 0.7417 0.1878 150.59 0.0555

Table 6. Quantitative Comparisons for Image-to-Video Models.
We evaluate our portrait-Champ with recent diffusion based base-
lines in face reenactment scenarios. Ours portrait-Champ obtain
the best scores in accuracy and comparable FID and KID.

Input Type
2D Video Rendering Quality

Subject Consistency ↑ PSNR↑ SSIM↑ LPIPS↓ Imaging Quality↑

Real Video 0.9761 22.26 0.9045 0.1352 0.5366
Synthetic Video self-driving 0.9719 21.23 0.9241 0.1582 0.5896

Table 7. Quantitative Comparison of Impact of Inconsistency.
Quantitative comparison of PERSE avatar models trained on real
and synthetic videos. Note that 2D video evaluated for subject
consistency is used for training, and rendering quality is evaluated
on unseen head poses and facial expressions using a test sequence.

(a) GT (b) Real Video (c) Synthetic Video

Figure 13. Qualitative Comparison of Impact of Inconsistency.
We show qualitative comparision of impact of inconsistency be-
tween real and 2D generated video.

and image quality for 20 pairs of interpolations. The pairs
are randomly selected from the hair category. We collect
responses from 229 participants via CloudResearch [4].

C. More Experiments
C.1. Additional Results
We present additional sample results of attribute-edited por-
trait image generation, providing seven results for each at-
tribute in Fig. 14 and Fig. 15. Furthermore, we demonstrate
the rendering results of our personalized 3D generative avatar
on unseen poses, trained with synthetic datasets created us-
ing additional portrait images in Fig. 16, Fig. 17, Fig. 18,
Fig. 19, and Fig. 20. Finally, we provide the interpolation
results between two latent codes for each attribute in Fig. 21.

C.2. Impact of Video Inconsistency
The different between real and generated 2D video is negligi-
ble, as monocular avatar-building pipeline handles temporal
deformations and inconsistencies. To assess this, we present
evaluations by building a 3D avatar from each single video,
as demonstrated in Tab. 7 and Fig. 13. We measure sub-
ject consistency and imaging quality following VBench [13],
comparing real video and generated video from portrait-



Champ by animating the first frame in a self-driven man-
ner, where they show minor differences. After building 3D
avatars from each 2D real and generated video separately, we
also compare the rendering quality under novel head poses
and facial expressions. As shown in Tab. 7 and Fig. 13, the
avatar renderings also show negligible differences in quality,
with comparable PSNR, LPIPS, and SSIM scores.

C.3. Synthetic Monocular Dataset Generation from
Single Image

To demonstrate the effectivness of our portrait-Champ, we
evaluate the reconstruction quality and rendering realism
compared to diffusion based baselines. Moore AnimateAny-
one [20] is open-source repository fine-tuned AnymateAny-
one [12] to be specialized on facial reenactment. Mimic-
Motion [34] is a full body animating model based on Stable
Video Diffusion [1] also capable of reenactment using facial
landmarks in DWPose. MegActor-Σ is Diffusion Trans-
former [21] based approach to solve reenactement problem.
We disable the additional audio input option of MegActor-Σ
during test here.

We test the methods using 20 sequence randomly selected
from CelebV-Text dataset [31] not seen during the trainin-
ing. We animate the first frame to make other frames and
compare with ground truth frames in the video to compute
accuracy. We additionally calculate FID and KID against
FFHQ dataset [14] to evaluate the naturaless of the animated
images. As shown in Tab. 6, our approach achieves the
highest reconstruction score across all metrics compared to
previous SOTA methods.

D. Rights
All portrait reference images used in this work are sourced
from the FreePik [8] website under a free license. Note that
all of our portraits to show our results are not AI-generated
images. Our code and samples of synthetic datasets are pub-
licly released for research purposes only. For more details,
refer to https://github.com/snuvclab/perse
about our implementations.

E. Notations
Refer to Tab. 8 for an overview of the notations used in this
paper.

https://github.com/snuvclab/perse
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Figure 14. Example of Attribute-Edited Portrait Image Generation (1). We present samples of attribute-edited portrait image generation.
For each attribute, we display results obtained through random sampling.
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Figure 15. Example of Attribute-Edited Portrait Image Generation (2). Our method can be applied to various portrait images
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Figure 16. Unseen Pose Rendering Results (1). We present the rendering results using latent codes for novel head poses and facial
expressions not included in the training dataset, categorized by each attribute.
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Figure 17. Unseen Pose Rendering Results (2).
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Figure 18. Unseen Pose Rendering Results (3).



Figure 19. Unseen Pose Rendering Results (4). We show hair-only rendering results for unseen poses.



Figure 20. Unseen Pose Rendering Results (5). We show hair-only rendering results for unseen poses.
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Figure 21. Interpolation Between Two Latent Codes. We present the rendering results obtained by interpolating between two latent codes.



Figure 22. User Study. We show user study screenshot.



Table 8. Table of notations.

Symbol Description

Index
i Gaussian index i ∈ {1, . . . , N} in 3D Gaussian attributes
j Category index j ∈ {1, . . . , Nc} of edited attributes in synthetic dataset.

Learnable Parameters and Networks
MLPc Canonical MLP estimating attributes of 3D Gaussians
MLPd Deformation MLP estimating deformation attributes
MLPpose Pose-conditioned deformation MLP estimating change of Gaussian attributes
MLPz Latent mapping MLP from CLIP feature fI , fT to subject-specific latent z
P gc = {xgci }i={1···N} Learnable positions of 3D Gaussians

Spaces of our Avatar Model
P gc Generic canonical space, single space shared on all subject
P sc Subject-specific canonical space, conditioned by subject latent z
P fc FLAME-canonical space, deformed from subject-specific canonical space with blendshape
P d Deformed space, deforming P fc with FLAME pose parameters

Diffusion Related
T Text-prompt queried into the diffusion model
C(·) 2D key points and face landmarks estimator and renderer (OpenPose)
τ Diffusion denoising time-step
ξ0 Encoded latent of the queried RGB images of diffusion model
ξτ Perturbed latent with noise time-step τ ∈ [0, 1]
ϵ Noise added to the latent

Attributes of 3D Gaussians
xi ∈ R3 Center of i-th Gaussian, or point position in PEGASUS
qi ∈ R4 Covariance Matrix’s Quaternion of i-th Gaussian
si ∈ R3 Covariance Matrix’s Scale Component of i-th Gaussian
ci ∈ R3 Color of i-th Gaussian
oi ∈ R Opacity of i-th Gaussian

Off-the-Shelf Network
I2Iinpaint Text-conditioned Image-to-Image inpainting pipeline, based on image diffusion
T2I Text-to-Image diffusion model
I2V Portrait animating Image-to-Video model, portrait-Champ or LivePortrait [9].

FLAME Parameters of Avatar Deformation
θ ∈ R15 FLAME pose parameter
β ∈ R100 FLAME shape parameters
ψ ∈ R50 FLAME expression parameters
E ∈ R50×5023 FLAME expression blendshape parameters, estimated by MLPd for each Gaussian
P ∈ R100×5023 FLAME shape blendshape parameters, estimated by MLPd for each Gaussian
W ∈ R15×5023 FLAME Linear Blend Skinning (LBS) weight, estimated by MLPd for each Gaussian

Rendered and Observed Images
Î/I Rendered / Ground Truth Image
M Mask of subpart region
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