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A. Supplementary Video

This work focuses on 3D facial motions, which are best
viewed in video format. Please refer to the attached sup-
plementary video. The video contains qualitative results
of lip synchronization on the VOCASET and MEAD-3D
test sets, demonstrating the effectiveness of our method in
enhancing lip synchronization in aspects of lip readability
and expressiveness.

B. Emergent Properties of 2D Speech Represen-
tation

In this section, we conduct further analyses of 2D speech
representation (i.e., 2D prior knowledge), which motivate
the transfer of the emergent properties of 2D speech repre-
sentation to the speech-mesh representation space using a
curriculum learning approach.

We observe that the 2D audio-visual speech representa-
tion, trained with a transformer architecture and an extensive
video dataset [1], inherently exhibits the desirable properties
for lip synchronization that we aim to achieve. We visualize
a cosine similarity versus temporal offset graph and a t-SNE
visualization of the 2D audio-visual speech representation
in Fig. S1. The speech representation exhibits the prop-
erties regarding the critical aspects of lip synchronization:

(a) Temporal Synchronization (b) Lip Readability
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Figure S1. Emergent properties of 2D speech representation.
We visualize a cosine similarity versus temporal offset graph and a
t-SNE visualization of the 2D audio-visual speech representation.
The 2D speech representation already possesses desired properties
we pursue, which motivates us to transfer the emergent properties
to the speech-mesh representation space.

(1) Temporal sensitivity in Fig. S1-(a), (2) clear separation
and clustering of speech features corresponding to the same
phoneme group in Fig. S1-(b), and (3) a directional progres-
sion of speech features as intensity increases from the lowest
to the highest levels in Fig. 5-(b) of the main paper . This
motivates us to transfer these emergent properties to the 3D
speech-mesh representation through the curriculum learning
approach, as mentioned in Sec. 4 of the main paper. Fur-
thermore, as shown in Figs. 4 and 5 of the main paper, we
demonstrate that these properties are successfully transferred
to the speech-mesh representation.

C. Speech-Mesh Synchronized Representation

We provide more details on the network architecture of audio-
visual speech representation and speech-mesh representation
(Sec. C.1). In addition, we provide the training details of the
two-stage training process (Sec. C.2) and dataset statistics
of speech-mesh benchmark datasets (Sec. C.3).

C.1. Network architecture

To improve the reproducibility of our speech-mesh represen-
tation, we further illustrate the detailed network architectures
for the audio-visual speech representation and the speech-
mesh representation, which are shown in Table S1.

'We freeze the pre-trained speech encoder from stage 1 and utilize it as the
speech encoder in stage 2, which ensures that the speech representation in
both stages shares the same favorable property of expressiveness.



Stage ‘ Module ‘ Input — Output ‘ Layer Operation
| Speech Tokenizer | X(Cs, Hy, W) — S(N, H) | Conv2D((1,16), (1,16), H)
unmask unmask
Speech Encoder S Wgﬁk H) = [MHSA(H,8) — FFN(H)] x 10 — LN
Zs(N ,H)
Concat(Linear( H, 384)+ PE(Nunmask) PE(Nmask))
Speech Decoder F, — S(N™esk C, . H, - W) MHSA(384,8) — FFN(384 - 4) —
P [MHSA(384,8) — MHCA(Z,,384,6) — FFN(384 - 4)] x 3 —
| LN — Linear(C, - H, - W,) — Slice[ Nunmask .]
| Video Tokenizer | Xy (Cy, T, H,,W,) — V(M, H) | Conv3D((1,16,16),(1,16,16), H)
) Vun’rnask‘ (A{u'n,'nmsk‘7 H) N
Video Encoder Z, (Munmask ) [MHSA(H,8) — FEN(H)] x 10 — LN
Concat(Linear(H, 384)+ PE(Mvnmask) PE(M™5k)) —
Video Decoder | Fv V(M™mesk C, - H, - Wy) | MHSA(H,8) — FFN(H) —
[MHSA(H,8) - MHCA(Z,, H,6) — FFN(H)] x 3 —
LN — Linear(C, - H, - W,) — Slice[Mnmask ]
Fusion Encoder Zs,Z, — Fg(Nvvmask [) [MHSA(H,8) - MHCA(Z,, H,8) — FFEN(H - 4)] x 2
USIONENCOAEr | 7 7, — Fy (Munmask ) [MHSA (H, 8) — MHCA(Z,, H,8) — FEN(H - 4)] x 2
) | Mesh Tokenizer | Xy (T,V -3) — M(T, H) | Linear(H)

| Mesh Encoder | M — Z, (T, H)

[MHSA(H,8) — FEN(H)] x 10 — LN

Table S1. Architecture details. The parameters of network architectures. Conv2D(k, s, n) denotes a 2D Convolutional layer with kernel
size k, stride size s, and output channel of n. MHSA(d, nhead) denotes a multi-head self-attention layer with the input channels d and
the number of heads in multi-head attention nhead. MHCA(ca, d, nhead) denotes a multi-head cross-attention layer with additional
cross-attention input ca. PE(a) is a position embedding layer where a denotes the length of the position vector. FEN(d) is a feed-forward
layer. Linear(n) denotes a linear layer with output channels of n. LN denotes layer normalization and Slice[s :] denotes slice operation.

C.2. Training pipeline

Two-stage training process. In our experiment, we set 1" =
5, H =512, and P = 30. For training the audio-visual speech
representation, we use C's = 1, Hy = 64, W, =128, N =512
for speech modality and C = 3, H, = 160, W, = 160, M
= 500 for video modality. We train the audio-visual speech
representation using LRS on two NVIDIA A6000 for 100
epochs with the AdamW optimizer (8; = 0.9, 52 = 0.95 and
€ = le-8), where the learning rate is initialized as 3e-4, and
the mini-batch size is set as 40. For training the speech-mesh
representation, we use the number of vertices V' = 5023. We
train the speech-mesh representation using LRS-3D with the
mini-batch size of 80, and other hyper-parameters remain
unchanged as Stage 1.

Perceptual loss. We employ our speech-mesh representation
as a perceptual loss to enhance the perceptual accuracy of
the 3D talking head model. We finetune our speech-mesh
representation using the VOCASET [3] train split on an
NVIDIA A6000 for 5 epochs with the initial learning rate le-
4 and other hyper-parameters remain unchanged as Stage 2.
To train the 3D talking head models with our perceptual loss,
we split the generated mesh from the model into 5 frames
using a sliding window size of 1. We make a batch of size 80
and get uni-modal embeddings from our representation. We

Dataset # Vertex clips ~ # Speaker IDs  Total hours FPS
VOCASET 475 12 0.5 30
BIWI 1109 14 1.4 25
LRS3-3D 17752 788 61.1 25
MEAD-3D 8765 15 10.2 30

Table S2. Statistics of speech-mesh paired benchmark. We use
VOCASET, LRS3-3D and MEAD-3D speech-mesh paired datasets
in our experiments. We construct two large-scale speech-mesh
benchmark datasets, LRS3-3D and MEAD-3D, using monocular
face reconstruction methods.

Datasets Datasets
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Figure S2. Speech and lip intensity distributions across datasets.
We present speech and lip intensity distributions and corresponding

standard deviation values across datasets.

additionally apply the InfoNCE loss with a weight of le-7
to the original training loss of the model.



C.3. Dataset statistics

We construct LRS3-3D and MEAD-3D by processing
LRS3 [1] and MEAD [12] videos using two monocular
face reconstruction methods, respectively: SPECTRE [6]
for LRS3, which ensures accurate lip movements, and
SMIRK [9] for MEAD, which captures diverse speech and
lip movement intensities. We construct a test split for LRS-
3D, involving 934 clips. We split MEAD-3D to construct a
test split, which includes 3470 clips.

Table S2 and Fig. S2 show the statistics of the exist-
ing (VOCASET [3], BIWI [5]) and the newly proposed
large-scale speech-mesh benchmark datasets (LRS3-3D and
MEAD-3D). As shown in Table S2, LRS3-3D and MEAD-
3D have notably larger data sizes than VOCASET and BIWI.
Fig. S2 presents the broader speech and lip intensity” distri-
butions of LRS3-3D and MEAD-3D with higher standard
deviations (o), indicating greater variability in facial mo-
tions. In contrast, VOCASET and BIWI show limitations in
both scale and diversity.

D. Details for Human Study on Lip Synchro-
nization Criteria

Human preference between the speech and lip intensi-
ties. We conduct a preliminary experiment to demonstrate
the positive correlation of human preference between the
intensity of speech and lip movements in the 3D talking
face field. Using the intensity annotations from the MEAD
dataset [12], we first split the MEAD-3D dataset into three
categories: Level 1, Level 2, and Level 3, representing dif-
ferent intensity levels. Then, we train a 3D talking face
model [4] using VOCASET [3] (to ensure the quality of
generation) and each intensity split separately. This results
in three distinct models, each of which tends to generate lip
movements biased toward the intensity level present in its
training data, regardless of the speech intensity provided as
input. We input three speeches with intensity levels ranging
from Level 1 to Level 3 into each of the three biased mod-
els, producing nine intensity configurations in the generated
mesh sequences as shown in Tab.1-[Left] of the main paper.
We then asked 17 participants, a balanced group of males
and females from a non-expert background in the field, to
rank their preferences in three videos, assigning a score from
1 (least preferred) to 3 (most preferred). Each video has the
same speech (identical in utterance and intensity) but differs
in the intensity of the lip movements.

Human preference on Temporal sync. vs. Expressiveness.
We design a simple A/B test to investigate an interesting
aspect of human perception for lip synchronization. We use
the two biased models from the previous human study: one

2Lip intensity was normalized by eye distance to account for differences
between FLAME and BIWI topologies.

trained to generate Level 1 lip movements and the other
trained to generate Level 3 lip movements, regardless of the
speech intensity. For each model, we create two types of
samples. Sample A is temporally synchronized but lacks
expressive synchronization (e.g., speech of Level 3 intensity
and lip movements of Level 1 intensity). In contrast, sample
B has expressive synchronization (e.g., speech of Level 3
intensity and lip movements of Level 3 intensity) but is
temporally misaligned. To introduce the temporal mismatch
in Sample B, we make the speech lead the lip movements
by 100ms, which exceeds twice the established maximum
acceptable synchrony [11]. We then asked 28 participants,
comprising a balanced group of males and females from a
non-expert background in the field, to choose which sample
they prefer based on how well the lip movements correspond
to the speech in sample A vs. B.

E. Evaluation Metrics

We present the comprehensive definitions of the evaluation
metrics and their implementation details (Sec. E.1). In addi-
tion, we provide the human study on the perceptual metric
(Sec. E.2), which demonstrates the correlation between our
perceptual metric and human preference.

E.1. Definition and implementation details

Mean Temporal Misalignment (MTM). Let V (¢) represent
the ground truth vertex sequences, where each frame ¢ con-
sists of vertex positions v; € RN*3 with N being the num-
ber of vertices. Similarly, V(t) represents the predicted ver-
tex sequences, with predicted vertex positions ¥, € RV >3,
For each sample k, we select two specific vertices that corre-
spond to the center of the upper and lower lips, extracting the
upper-lip vertex sequence V, (t) € RT3 and the lower-lip
vertex sequence V;(t) € RT3 (refer to Fig. S3).

We then calculate the Euclidean distance between the
upper and lower lip vertices over time to derive the ground
truth lip distance sequence d, (t) = |V, (t) — V(¢)||. The
same process is applied to obtain the predicted lip distance
sequence G?U(t). To reduce noise, we apply a Gaussian filter
to both lip distance sequences.

Next, we compute the first-order derivatives of the
smoothed lip distance sequences to capture the dynamic
changes in lip movement. We then use Derivative Dynamic
Time Warping (DDTW) [7] to determine the optimal align-
ment path A = {(4, )} between the derivative sequences

dd,(t) and dd, (t). We identify local extrema (peaks and val-
leys) in each derivative sequence and match only extrema of
the same type (i.e., both maxima or both minima) to compute
the absolute time difference dt,, = |i — j| (refer to Fig. S4).

For each sample k, the sample mean temporal misalign-

M

1
ment Aty is computed as Aty = i > 1 Otn, Where

M is the number of matched extrema pairs in the sample.



(a) lower-lip central vertex

(b) upper-lip central vertex

Figure S3. Central vertices of the lower and upper lips. We
select two specific vertices that correspond to the center of the upper
and lower lips to extract the lip vertex displacement sequences.
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Figure S4. An example of DDTW matching results between
ground truth and predicted lip distance sequences. We present
an example of the DDTW local extrema correspondences of the
ground truth and predicted lip vertex displacement sequences. We
represent matched local extrema using green lines.

Finally, the overall mean temporal misalignment is given
— 1
by At = 7 SO, Aty, where K is the total number of

samples. A smaller At indicates better temporal alignment
of the predicted sequences with the ground truth lip move-
ments. To express the Mean Temporal Misalignment (MTM)
in milliseconds, we multiply At by the frame duration for
the given dataset. For instance, for a dataset with 25 FPS,
the MTM is obtained by multiplying At by 40ms. Refer
to Algorithm 1 for more details on the MTM calculation.
Furthermore, to validate the physical accuracy of our pro-
posed temporal synchronization metric, we present a graph
showing the relationship between the temporal offset and
the corresponding MTM values. Specifically, we introduce
temporal mismatch to the ground truth mesh sequences of
VOCASET [3] by making the speech leading the mesh se-
quences by 0 to 10 frames (i.e., 0 to 333ms for VOCASET).
Figure S5 shows that MTM accurately captures the degree of
temporal mismatch across the samples, demonstrating the ef-
fectiveness and physical accuracy of our proposed temporal
synchronization metric.

Perceptual Lip Readability Score (PLRS). We train
speech-mesh representation using our proposed two-stage
training process with different datasets, initializations, and
batch sizes. For both Stage 1 and Stage 2, we use a batch size

Mean Temporal Misalignment
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Figure S5. Physical accuracy of Mean Temporal Misalign-
ment. We introduce temporal mismatch to the ground truth mesh
sequences of VOCASET [3] by shifting the speech to lead the mesh
sequences by 0 to 10 frames (where O represents no mismatch). For
each temporal offset, we calculate the average MTM and plot a
graph showing the relationship between the temporal offset and the
corresponding MTM values.

of 256. Given a speech and generated mesh pair (X, Xm),
we split the generated mesh into 5 frames with a sliding
window size of 5 to make mesh tokens {M;}& , , and the
speech is also converted into corresponding speech tokens
{S;}5.,. We then compute the average cosine similarity be-
tween mean pooled speech embeddings {cs ; }$., and mesh
embeddings {cm ; }$ ;¢

G
- 1 s.i " Cm,i
PLRS(S,M) = Yo i O (a)
=1

1Cs,ill llem. il

Speech-Lip Intensity Correlation Coefficient (SLCC).
First, we define speech intensity using speech loudness,
specifically the Root Mean Square (RMS) value, which is a
widely accepted measure of speech intensity in signal pro-
cessing. RMS loudness effectively captures the energy of the
speech signal and provides an accurate representation of per-
ceived speech intensity. However, since RMS values can vary
based on recording conditions (e.g., microphone gain and
distance from the microphone), we perform identity-wise
z-normalization on the RMS values to standardize them, as-
suming that clips belonging to the same identity are recorded
under similar conditions. The Speech Intensity (SI) is thus
defined as:

 RMSj, — 155

Os,i

s

where RMSy, is the averaged RMS value of k-th video clip
and p, ; and o ; are the mean and standard deviation of the

SI, (b)



speech RMS values for the clips with identity ¢ € I.
To define Lip Intensity (LI), we first measure the averaged
lip displacement value of k-th video clip Disty. as:

2

1 Tp—1 1 Vi
1 > (wZum,v—lt,vn) , ©
. t=1

Dist;, =

v=1

where T, is the number of frames in clip k, V; is the number
of vertices in the lip region, and 1,,, € R represents a
vertex position in the lip region at time ¢. Similar to Speech
Intensity, we perform identity-wise z-normalization to the
lip displacement values to mitigate individual bias in lip
movement as:
LI, = Dist;, — ,um’ )
O1,i
where 117 ; and 07 ; are the mean and standard deviation of
the lip displacement values for the clips belonging to identity
1€l
Finally, we can obtain the Speech and Lip Correlation
Coefficient as:

S (ST — ST)(LI — L)
rsL =
VKL (ST~ ST (L - L1)?

where ST = L S0 STy and LT = L S | LIj.

G

E.2. Human study on perceptual metric

To validate that our proposed perceptual metric, Percep-
tual Lip Readability Score (PLRS), effectively evaluates
perceptual alignment, we conduct a human study that as-
sesses the correlation between the metric scores and human
preferences. We collect meshes from the ground-truth VO-
CASET [3] dataset and those generated by FaceFormer [4],
CodeTalker [13] and SelfTalk [8]. We measure the PLRS
and the existing evaluation metric Lip Vertex Error (LVE)
for the generated meshes of each model, and subsequently
rank the models by their PLRSs and LVEs. We ask 16 par-
ticipants, evenly balanced in gender and from non-expert
backgrounds, to rank the models based on their preferences.
We then compute the Spearman’s correlation coefficient p to
compare the PLRS rankings and the LVE rankings with the
human preference rankings. As shown in Table S3, PLRS
exhibits a far more positive correlation with human prefer-
ences compared to the LVE. This highlights the efficacy of
our proposed metric in evaluating perceptual lip readability
from a human perspective.

F. Implementation Details of Ablation Study

In this section, we provide implementation details of model
variants ablated from our speech-mesh representation: the
3D SyncNet and the representation w/o 2D prior.

Metric Spearman’s p
LVE 0.166
PLRS 0.437

Table S3. Human study on perceptual metric. We conduct a
human study to validate our proposed perceptual metric, PLRS. We
compute the Spearman’s correlation coefficient p to compare the
PLRS rankings with the human preference rankings.

3D SyncNet. Inspired by Chung et al. [2], we train 3D
SyncNet to evaluate the performance of our transformer-
based model compared to a CNN-based model. 3D SyncNet
is trained using InfoNCE loss with a batch size of 80. The
architecture of 3D SyncNet consists of the mesh encoder
comprising three dilated convolutional layers and the speech
encoder with six convolution layers followed by two linear
layers. The mesh and speech features are extracted from each
encoder, respectively. We train 3D SycnNet on an NVIDIA
RTX 3090 GPU for 20 epochs using LRS3-3D. Also, for
imposing the perceptual loss to 3D talking head models with
3D SyncNet, we finetune the model with VOCASET [3]
train split for 5 epochs, as our speech-mesh representation
model does.

Ours w/o 2D prior. We train speech-mesh representation
without Stage 1 training to evaluate the effectiveness of our
learned 2D prior. We train the speech encoder and mesh
encoder, both with the same architecture as Stage 2, and the
other hyperparameters are the same as in Stage 2.

G. Additional Results

In this section, we present quantitative results on human
studies (refer to Sec. G.1) and Upper Face Dynamics De-
viation (FDD) evaluation (refer to Sec. G.2), comparing
samples generated by the base models [4, 8, 13] with and
without perceptual loss to demonstrate the effectiveness of
our speech-mesh representation. Additionally, we provide
the qualitative result of temporal synchronization for the
base models [4, 13] (refer to Sec. G.3). We also provide
comparisons on the stability of perceptual loss and cosine
similarity for ablated model variants (refer to Sec. G.4).

G.1. Human study on applying perceptual loss

We conduct a human study to evaluate the perceptual pref-
erence for our method with two configurations: (1) training
and testing on VOCASET, and (2) training on the combined
MEAD-3D and VOCASET and testing on MEAD-3D, as
mentioned in Sec. 6.1 of the main paper.

In the first configuration, we ask participants, evenly bal-
anced group of males and females with non-expert back-
grounds, to compare two videos: one generated by the base
model [4, 8, 13] without our perceptual loss and the other
with it. To assess the quality of generated meshes, we design



two separate descriptions—one focusing on lip synchroniza-
tion and the other on overall quality. For lip synchroniza-
tion, participants are provided with the following description:
“Please evaluate the lip synchronization between the speech
and the lip movements in videos A and B, and choose the
one that is more realistic and preferred.” A total of 18 partic-
ipants take part in this evaluation. Table S4 shows that the
participants significantly favor the models incorporating our
perceptual loss with an overall preference rate of 72.9%. For
overall quality, the description is as follows: “Please evaluate
the overall quality of facial movements in videos A and B,
and choose the one that is more realistic and preferred.” This
evaluation involves 15 participants. As shown in Table S5,
the participants show a strong preference for the model incor-
porating perceptual loss, with an overall preference rate of
73.3%, indicating that the perceptual loss not only improves
lip synchronization but also enhances the overall quality of
facial movements.

In the second configuration, we ask 14 participants, also
an evenly balanced group of males and females with non-
expert backgrounds, to compare three videos: one generated
by the base model [4, 8, 13] trained on VOCASET, another
generated by the base model trained on both MEAD-3D
and VOCASET without our perceptual loss, and the other
generated by the base model trained on both MEAD-3D and
VOCASET with our perceptual loss. The description is as
follows: “Please rate the lip synchronization between the
speech and the lip movements in videos A through C, with
3 being the most realistic and preferred, and 1 being the
least.” As indicated in Table S6-(a) and (b), the participants
significantly prefer the models incorporating MEAD-3D and
our perceptual loss each by in 76.9% and 67.9% overall.
Notably, incorporating both MEAD-3D dataset and the per-
ceptual loss results in 84.6% of participants favoring the
model, as shown in Table S6-(c), compared to the original
models.

This preference on the two configurations highlights the
effectiveness of our speech-mesh representation as a plug-in
module in enhancing lip synchronization from the perspec-
tive of human perception.

G.2. FDD evaluation on applying perceptual loss

In Table S7, we measure Upper Face Dynamics Deviation
(FDD) [13], a widely used metric for the upper face evalua-
tion, to assess the effectiveness of our perceptual loss. The
models applying our perceptual loss achieve similar or im-
proved FDD scores. It is expected because FDD is not the
main focus of our work due to no direct relationship with
the quality of lip movements.

G.3. Qualitative result of temporal synchronization

We present the qualitative result of temporal synchronization
using existing base models [4, 8, 13] (See Fig. S8). Given

Model w/o Our rep.  w/ Our rep.
FaceFormer 13.7% 86.3%
CodeTalker 32.4% 67.6%
SelfTalk 35.3% 64.7%
Overall 27.1% 72.9%

Table S4. Human study results on lip synchronization in con-
figuration 1. We adopt A/B test and report the percentage (%) of
preferences for A (Ours) over B, assessing the generated meshes on
lip sync. Participants significantly favor the models incorporating
our perceptual loss by in overall 72.9%.

Model w/o Our rep.  w/ Our rep.
FaceFormer 14.4% 85.6%
CodeTalker 27.8% 72.2%
SelfTalk 37.8% 62.2%
Overall 26.7% 73.3%

Table S5. Human study results on overall quality in config-
uration 1. We adopt A/B test and report the percentage (%) of
preferences for A (Ours) over B, assessing the generated meshes
on overall quality. Participants show a strong preference for the
models applying our perceptual loss, with an overall preference
rate of 73.3%.
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Figure S6. Perceptual loss stability. We visualize the perceptual
loss between GT speech-mesh pairs on VOCASET samples. Our
representation demonstrates strong generalization capability and
provides a stable training signal compared to 3D SyncNet and our
representation without 2D prior.

rendered 3D face mesh sequences, we place a vertical line
with two pixel points near the lip region and extract the y-t
slices of the mesh sequences to visualize the timing of lip clo-
sure and opening. Next, we align the y-t slices with their cor-
responding speech waveforms and mel-spectrograms along
the time axis. We observe that these models already have
a reasonable temporal synchronization capability. Specifi-
cally, the timing of lip closure (e.g., for the /p/ sound) in the
y-t slices aligns with minimal amplitude in both the speech
waveforms and mel-spectrogram, while the timing of lip



Model @

(b)

(©)

Original ~ Original + MEAD-3D  Original + MEAD-3D  Original + MEAD-3D + Our rep.  Original ~ Original + MEAD-3D + Our rep.

FaceFormer  33.3% 66.7% 32.1% 67.9% 19.2% 80.8%
CodeTalker 17.9% 82.1% 34.6% 65.4% 19.0% 91.0%
SelfTalk 17.9% 82.1% 29.5% 70.5% 17.9% 82.1%
Overall 23.1% 76.9% 32.1% 67.9% 15.4% 84.6%

Table S6. Human study results on lip synchronization in configuration 2. We report the percentage (%) of preferences for A over B,
assessing the generated meshes on lip sync. Overall 84.6% of participants prefer the model with MEAD-3D and our perceptual loss.
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Figure S7. Cosine similarity stability. We visualize the cosine
similarity between GT speech-mesh pairs on VOCASET samples.
Our representation demonstrates strong generalization capability
compared to 3D SyncNet and our representation without 2D prior.

FDD |
(x10~"mm)

FaceFormer 3.789
+ Ours rep. 3.325
CodeTalker 3414
+ Ours rep. 3.259
SelfTalk 3.319
+ Ours rep. 3.424

Table S7. FDD evaluation. We report Upper Face Dynamics
Deviation (FDD) scores to evaluate the variation in upper facial dy-
namics, which is not the main focus of our work. As expected, the
models trained with our perceptual loss show similar or improved
FDD scores.

opening (e.g., for the /r/ sound) in the y-t slices coincides
with a large amplitude in both speech representations.

G .4. Stability comparison on loss and cosine simi-
larity

To utilize our speech-mesh synchronized representation as
a perceptual loss, it is essential to provide a stable training
signal to the 3D talking head model. In the domain of 2D
audio-visual speech representation, Yaman et al. [ 14] reveal
that the transformer-based architecture [10] learns more ro-
bust representation and provides more stable guidance to
talking head models compared to a CNN-based approach [2].

Ground Truth

FaceFormer [k | AA I
CodeTalker I A

t 3D mesh
sequences

Figure S8. Qualitative results of temporal synchronization on
existing models. We plot y-t slices of rendered 3D face mesh
sequences on the lip region with corresponding speech waveforms
and mel-spectrogram. We also indicate the time steps of lip closure
and opening with vertical lines. This implies that existing models
already exhibit reasonable temporal sync. capability.

To explore whether these observations hold for 3D speech-
mesh representations, we evaluate both the lip-sync loss
and cosine similarity across 3D SyncNet, our representation
without 2D prior and our final representation. This analysis
aims to validate the effectiveness of the transformer-based
architecture and curriculum learning with a pre-trained 2D
speech representation.

Specifically, we measure the perceptual loss and cosine
similarity, computing the mean and standard deviation for
both the train and test samples. Figures S6 and S7 show
the comparisons of perceptual loss and cosine similarity
comparison across the three representation variants. We
denote the train samples as green box plots and test samples
as orange box plots, respectively.

Our speech-mesh representation (Figs. S6-(c) and S7-
(c)) demonstrates the highest stability, exhibiting the lowest
standard deviations (the height of the box plots) on test
set in both lip-sync loss and cosine similarity. In contrast,
the representation without 2D prior (Figs. S6-(b) and S7-
(b)) reveals significant discrepancies between the train and
test samples on both the lip-sync loss and cosine similarity,
indicating poor generalization capability. Additionally, it
shows the highest standard deviations, which potentially
cause unstable training. Meanwhile, 3D SyncNet (Figs. S6-
(a) and S7-(a)) displays the worst mean values of perceptual



Time| Mem. |
(sec.) (MB)

FaceFormer  0.447 1461
+ Oursrep.  0.537 1738
CodeTalker  0.138 3393
+ Ours rep.  0.289 3675
SelfTalk 0.175 8204
+ Oursrep.  0.320 8480
Table S8. Training efficiency. We compared the memory consump-

tion and single-iteration speed during training with and without the
perceptual loss.

loss and cosine similarity among the three.

H. Discussion

Limitations. While our perceptual loss is applied only dur-
ing training, which ensures that the resource requirements at
inference remain unchanged, it requires additional computa-
tional resources during training. In Table S8, we compare
memory consumption and single-iteration speed during train-
ing, measured on a single A6000 GPU. Also, to capture the
intricate correspondence between speech and 3D face mesh,
we construct large-scale speech-mesh paired datasets, LRS3-
3D and MEAD-3D. To this end, we utilize state-of-the-art
monocular face reconstruction methods [6, 9], which may
impose limitations on the quality of the 3D mesh in the
reconstructed datasets.

Ethical considerations. Our method can generate realistic
3D talking faces from arbitrary audio signals, relying on both
the 3D scan data collected from actors and the reconstructed
data from 2D talking videos. Thus, while this technology has
powerful applications, it also poses risks of misuse, such as
creating harmful or embarrassing content. To mitigate these
risks, we emphasize raising public awareness and promoting
ethical and responsible use through continued research.

Algorithm 1 Mean Temporal Misalignment Calculation

Require: GT vertex sequence V' (), Predicted vertex sequence V(t)
Ensure: Overall mean temporal misalignment At

1:
2:
3:

4
5:
6:
7
8

9:
10:

11:

12:
13:

14:
15:
16:

17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:

31:
32:
33:
34
35:

36:

37:
38:
39:

Initialize list of sample mean misalignments: {Aty} < 0
for each sample k do
Initialize time differences list: {6t, } < 0
Extract lip vertices:
Upper lip vertex Vi, (t) € R from V (¢)
Lower lip vertex V;(¢) € R? from V (¢)
Predicted upper lip vertex Vy, (t) € R3 from V (¢)
Predicted lower lip vertex V;(t) € R3 from V' (¢)
Compute lip distance sequences:
do(t) = |[Vau(t) = Vi(1)]]
du(t) = |[Vatt) = Vico)|
Smooth sequences using Gaussian filter:
dy (t) = Gauss(dy(t))
dy (t) = Gauss(dy ()
Compute derivatives: _
8o (t) = dy(t) — du(t — 1)
0dy(t) = do(t) — do(t — 1)
Perform DDTW to find alignment path A = {(4,j)}
Identify local extrema in d,, () and d (t)
for each aligned pair (¢, j) € A do
if ¢ and j are matching extrema of same type then
if j is within neighboring extrema range of 4 in d,, (t) then
Compute time difference: dt,, < |i — j|
Append 6ty to {dtn }
end if
end if
end for
if {6tn} # 0 then
Compute mean delta time for clip k:

Aty = % o1 0tn
Append Aty to {Aty}
end if
end for
if {Atg} # 0 then
Compute overall mean temporal misalignment:

I 1 K
Ai= S, At

else
At is undefined
end if
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